Study on microbial diversity in the unexplored rhizosphere is important to understand their community structure, biology and ecological interaction with the host plant. This research assessed the genetic and functional diversity of fluorescent pseudomonads [FP] in the green gram rhizophere. One hundred and twenty types of morphologically distinct fluorescent pseudomonads were isolated during vegetative as well as reproductive growth phase of green gram. Rep PCR, ARDRA and RISA revealed two distinct clusters in each case at 75, 61 and 70% similarity coefficient index respectively. 16S rRNA partial sequencing analysis of 85 distantly related fluorescent pseudomonads depicted Pseudomonas aeruginosa as the dominant group. Out of 120 isolates, 23 (19%) showed antagonistic activity towards phytopathogenic fungi. These bacterial isolates showed varied production of salicylic acid, HCN and chitinase, 2, 4-diacetylphloroglucinol (DAPG), phenazine-1-carboxylic acid (PCA) and pyoluteorin (PLT). Production efficiency of inherent level of plant growth promoting (PGP) traits among the 120 isolates demonstrated that 10 (8%) solubilised inorganic phosphates, 25 (20%) produced indoles and 5 (4%) retained ACC deaminase activity. Pseudomonas aeruginosa GGRJ21 showed the highest production of all antagonistic and plant growth promoting (PGP) traits. In a greenhouse experiment, GGRJ21 suppressed root rot disease of green gram by 28-93% (p = 0.05). Consistent up regulation of three important stress responsive genes, i.e., acdS, KatA and gbsA and elevated production efficiency of different PGP traits could promote GGRJ21 as a potent plant growth regulator.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4184808 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108378 | PLOS |
Microbiol Res
January 2025
Université de Lyon, Université Lyon1, Laboratoire d'Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgro Sup, 43 Boulevard du 11 Novembre 1918, Villeurbanne 69622, France. Electronic address:
Pseudomonads are well-known for their plant growth-promoting properties and biocontrol capabilities against microbial pathogens. Recently, their potential to protect crops from parasitic plants has garnered attention. This study investigates the potential of different Pseudomonas strains to inhibit broomrape growth and to protect host plants against weed infestation.
View Article and Find Full Text PDFmSystems
October 2024
Bacterial Interactions and Evolution Group, DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark.
Unlabelled: Bacilli and pseudomonads are among the most well-studied microorganisms commonly found in soil and frequently co-isolated. Isolates from these two genera are frequently used as plant beneficial microorganisms; therefore, their interaction in the plant rhizosphere is relevant for agricultural applications. Despite this, no systematic approach has been employed to assess the coexistence of members from these genera.
View Article and Find Full Text PDFMicrobiol Spectr
October 2024
Department of Plant Pathology, University of California, Davis, California, USA.
Unlabelled: To gain insights into the diversity of sensu lato affecting sweet cherry in California, we sequenced and analyzed the phylogenomic and genomic architecture of 86 fluorescent pseudomonads isolated from symptomatic and asymptomatic cherry tissues. Fifty-eight isolates were phylogenetically placed within the species complex and taxonomically classified into five genomospecies: pv. , , , , and .
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
August 2024
Department of Environmental Science, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, India.
In past few years, salinity has become one of the important abiotic stresses in the agricultural fields due to anthropogenic activities. Salinity is leading towards yield losses due to soil infertility and increasing vulnerability of crops to diseases. Fluorescent pseudomonads are a diverse group of soil microorganisms known for promoting plant growth by involving various traits including protecting crops from infection by the phytopathogens.
View Article and Find Full Text PDFFront Chem
August 2024
Ames Laboratory, U. S. Department of Energy, Ames, IA, United States.
Pyoverdines are iron-chelating siderophores employed by various pseudomonads to promote their growth in iron-limited environments, facilitating both beneficial and detrimental interactions with co-inhabiting microbes or hosts, including plants and animals. The fluorescent pseudomonads produce fluorescent pyoverdines comprised of a conserved central chromophore and a unique strain-specific peptidic side chain produced by non-ribosomal peptide synthetases. Pyoverdine Pf5 (PVD-Pf5) is produced by Pf-5, a species known for supporting plant growth and its involvement in plant pathogen control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!