Structure-function relationship of PAMAM dendrimers as robust oil dispersants.

Environ Sci Technol

Department of Physics and Astronomy and ‡Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina 29634, United States.

Published: November 2014

PAMAM dendrimers have recently been investigated as efficient and biocompatible oil dispersants utilizing their encapsulation capacity; however, their high cationic charge density has been shown to be cytotoxic. It is therefore imperative to mitigate cationic charge-induced toxicity and understand the effects of such changes. Presented here is a synergistic experimental and computational approach to examine the effects of varying terminal surface charge on the capacity of dendrimers to disperse model liner, polycyclic aromatic, and hybrid hydrocarbons. Uncharged dendrimers collapse by forming intramolecular hydrogen bonds, which reduce the hosting capability. On the other hand, changing the surface charges from positive to negative greatly shifts the pKa of tertiary amines of the PAMAM dendrimer interior. As a result, the negatively charged dendrimers have a significant percentage of tertiary amines protonated, ∼30%. This unexpected change in the interior protonation state causes electrostatic interactions with the anionic terminal groups, leading to contraction and a marked decrease in hydrocarbon hosting capacity. The present work highlights the robust nature of dendrimer oil dispersion and also illuminates potentially unintended or unanticipated effects of varying dendrimer surface chemistry on their encapsulation or hosting efficacy, which is important for their environmental, industrial, and biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es5038194DOI Listing

Publication Analysis

Top Keywords

pamam dendrimers
8
oil dispersants
8
effects varying
8
tertiary amines
8
dendrimers
5
structure-function relationship
4
relationship pamam
4
dendrimers robust
4
robust oil
4
dispersants pamam
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!