We present measurements of superconducting flux qubits embedded in a three dimensional copper cavity. The qubits are fabricated on a sapphire substrate and are measured by coupling them inductively to an on-chip superconducting resonator located in the middle of the cavity. At their flux-insensitive point, all measured qubits reach an intrinsic energy relaxation time in the 6-20 μs range and a pure dephasing time comprised between 3 and 10 μs. This significant improvement over previous works opens the way to the coherent coupling of a flux qubit to individual spins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.113.123601 | DOI Listing |
Nat Commun
January 2025
Univ. Grenoble Alpes, CEA, Grenoble INP, IRIG-PHELIQS, 38000, Grenoble, France.
Hybrid superconductor-semiconductor Josephson field-effect transistors (JoFETs) function as Josephson junctions with gate-tunable critical current. Additionally, they can feature a non-sinusoidal current-phase relation (CPR) containing multiple harmonics of the superconducting phase difference, a so-far underutilized property. Here we exploit this multi-harmonicity to create a Josephson circuit element with an almost perfectly π-periodic CPR, indicative of a largely dominant charge-4e supercurrent transport.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, USA.
We present a scalable protocol for measuring full counting statistics (FCS) in experiments or tensor-network simulations. In this method, an ancilla in the middle of the system acts as a turnstile, with its phase keeping track of the time-integrated particle flux. Unlike quantum gas microscopy, the turnstile protocol faithfully captures FCS starting from number-indefinite initial states or in the presence of noisy dynamics.
View Article and Find Full Text PDFNat Commun
January 2025
Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada.
Landau-Zener tunneling, which describes the transition in a two-level system during a sweep through an anti-crossing, is a model applicable to a wide range of physical phenomena. Realistic quantum systems are affected by dissipation due to coupling to their environments. An important aspect of understanding such open quantum systems is the relative energy scales of the system itself and the system-environment coupling, which distinguishes the weak- and strong-coupling regimes.
View Article and Find Full Text PDFSci Adv
August 2024
Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, Warsaw PL 02668, Poland.
We demonstrate complete control over dynamics of a single superconducting vortex in a nanostructure, which we coin the Single Vortex Box. Our device allows us to trap the vortex in a field-cooled aluminum nanosquare and expel it on demand with a nanosecond pulse of electrical current. Using the time-resolving nanothermometry we measure [Formula: see text] joules as the amount of the dissipated heat in the elementary process of the single-vortex expulsion.
View Article and Find Full Text PDFSuperconducting quantum computers are rapidly reaching scales where bottlenecks to scaling arise from the practical aspects of the fabrication process. To improve quantum computer performance, implementation technology that guarantees the scalability of the number of qubits is essential. Increasing the degrees of freedom in routing by 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!