Two organophosphorus pesticides: methyl parathion and dicapthon.

Acta Crystallogr C Struct Chem

Department of Chemistry, Truman State University, Kirksville, MO 63501-4221, USA.

Published: October 2014

Structural studies performed in this laboratory of organophosphorus pesticides continue with these related compounds. The -NO2 groups of methyl parathion (systematic name: dimethyl 4-nitrophenyl phosphorothioate, C8H10NO5PS) and dicapthon (systematic name: 2-chloro-4-nitrophenyl dimethyl phosphorothioate, C8H9ClNO5PS) make dihedral angles of 10.67 (8) and 5.8 (1)°, respectively, with the planes of their attached rings, which accompanies angular distortion at the ring C atoms to which the -NO2 groups are attached. Similar distortions are observed at the C atom to which the thiophosphate groups are attached. Significant differences in distances and angles around the phenolic O, versus the -OMe groups, explain why it is the site of hydrolysis for these compounds. A comparison of a torsion angle involving the thiophosphate group and phenolic O atom with similar pesticide structures is given and indicates steric influences on that angle.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229614020233DOI Listing

Publication Analysis

Top Keywords

organophosphorus pesticides
8
methyl parathion
8
-no2 groups
8
groups attached
8
pesticides methyl
4
parathion dicapthon
4
dicapthon structural
4
structural studies
4
studies performed
4
performed laboratory
4

Similar Publications

Ratiometric fluorescent probe and smartphone-based visual recognition for HO and organophosphorus pesticide based on Ce/Ce cascade enzyme reaction.

Food Chem

December 2024

Laboratory of Functional Polymers, School of Materials Science and Engineering, Linyi University, Linyi 276005, China. Electronic address:

Organicphosphorus is a ubiquitous pesticide that has potential hazards to human health and environmental well-being. Therefore, the precise identification of residues of organophosphorus pesticides (OPs) emerges as an urgent necessity. A ratiometric fluorescent sensor for the detection of OPs by leveraging the catalytic activities of Ce and Ce on the two fluorescent substrates 4-Methylumbelliferyl phosphate (4-MUP) and o-phenylenediamine (OPD) correspondingly was designed.

View Article and Find Full Text PDF

Analysis of Thiodiphenol in Rat Urine as a Biomarker of Exposure to Temephos.

J Xenobiot

December 2024

Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. IPN 2508, Col. San Pedro Zacatenco, Ciudad de México 07360, Mexico.

Temephos is an organophosphorus pesticide widely used as a larvicide in public health campaigns to control vector-borne diseases. Data on the urinary elimination of temephos metabolites are limited, and there is no validated biomarker of exposure for its evaluation. This study aimed to determine the urinary excretion kinetics of temephos and its metabolites in adult male rats.

View Article and Find Full Text PDF

Butyrylcholinesterase plays an indispensable role in organisms, and its abnormal expression poses a significant threat to human health and safety, covering various aspects including liver-related diseases, diabetes, obesity, cardiovascular and cerebrovascular diseases, and neurodegenerative diseases. In addition, toxic substances such as organophosphorus and carbamate pesticides markedly inhibit BChE activity. BChE activity serves as a critical parameter for the clinical diagnosis of acute organophosphorus pesticide poisoning and the evaluation of organophosphorus and carbamate pesticide residues.

View Article and Find Full Text PDF

Involvement of gut microbiota in chlorpyrifos-induced subchronic toxicity in mice.

Arch Toxicol

December 2024

Laboratory of Molecular Toxicology, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1-5 Beichenxilu Road, Beijing, 100101, China.

Chlorpyrifos (CPF) is one of the most widely used organophosphorus pesticides all over the world. Unfortunately, long-term exposure to CPF may cause considerable toxicity to organisms. Some evidence suggests that the intestinal microbial community may be involved in regulating the toxicity of CPF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!