Improvements in accuracy and efficacy in treating tumors with radiation therapy (RT) over the years have been fueled by parallel technological and conceptual advances in imaging and image-guidance techniques, radiation treatment machines, computational methods, and the understanding of the biology of tumor response to RT. Recent advances in our understanding of the hallmarks of cancer and the emergence of strategies to combat these traits of cancer have resulted in an expanding repertoire of targeted therapeutics, many of which can be exploited for enhancing the efficacy of RT. Complementing this advent of new treatment options is the evolution of our knowledge of the interaction between nanoscale materials and human tissues (nanomedicine). As with the changes in RT paradigms when the field has encountered newer and maturing disciplines, the incorporation of nanotechnology innovations into radiation oncology has the potential to refine or redefine its principles and revolutionize its practice. This review provides a summary of the principles, applications, challenges and outlook for the use of metallic nanoparticles in RT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179207 | PMC |
http://dx.doi.org/10.3978/j.issn.2218-676X.2013.08.10 | DOI Listing |
Polymers (Basel)
January 2025
Department of Materials Science and Chemical Engineering, Jeonju University, Jeonju 55069, Republic of Korea.
Carbon nanotubes (CNTs) have garnered significant interest in the field of nanotechnology owing to their unique structure and exceptional properties. These materials find applications across a diverse array of fields, including electronics, environmental science, energy, and biotechnology. CNTs serve as potent reinforcing agents in polymer composites; even minimal additions can significantly improve the mechanical, electrical, and thermal properties of polymers.
View Article and Find Full Text PDFBiomaterials
January 2025
Centre for Advanced Imaging (CAI), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD, 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, University of Queensland, QLD, Australia. Electronic address:
Immune-modulating peptides have shown potential as novel immune-stimulating agents which enhance the secretion of anticancer cytokines in vitro. However, fast clearance from blood hampers the ability of such peptides to accumulate in the tumour and results in limited therapeutic efficacy in animal studies. To address the fast blood clearance, this work reports the development and validation of a novel polymeric nanoparticle delivery system for the efficient localization of an immunomodulating peptide in the tumour microenvironment (TME).
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Uppsala SE-75124, Sweden.
Adenosine receptors, particularly AAR, are gaining attention for their role in pathological conditions such as cancer immunotherapy, prompting the exploration for promising therapeutic applications. Despite numerous selective AAR antagonists, the lack of selective full agonists makes the partial agonist BAY60-6583 one of the most interesting activators of this receptor. Recent cryo-EM structures have univocally revealed the binding mode of nonselective ribosidic agonists such as adenosine and its derivative NECA to AAR; however, two independent structures with BAY60-6583 show alternative binding orientations, raising the question of which is the physiologically relevant binding mode.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Life Sciences, Keele University, Staffordshire, UK. Electronic address:
The ability to control the growth and orientation of neurites over long distances has significant implications for regenerative therapies and the development of physiologically relevant brain tissue models. In this study, the forces generated on magnetic nanoparticles internalised within intracellular endosomes are used to direct the orientation of neuronal outgrowth in cell cultures. Following differentiation, neurite orientation was observed after 3 days application of magnetic forces to human neuroblastoma (SH-SY5Y) cells, and after 4 days application to rat cortical primary neurons.
View Article and Find Full Text PDFNat Methods
December 2024
Istituto Italiano di Tecnologia, Center for Biomolecular Nanotechnologies, Arnesano, Italy.
Optical approaches to monitor neural activity are transforming neuroscience, owing to a fast-evolving palette of genetically encoded molecular reporters. However, the field still requires robust and label-free technologies to monitor the multifaceted biomolecular changes accompanying brain development, aging or disease. Here, we have developed vibrational fiber photometry as a low-invasive method for label-free monitoring of the biomolecular content of arbitrarily deep regions of the mouse brain in vivo through spontaneous Raman spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!