DNA methylation, the reversible addition of methyl groups at CpG dinucleotides, represents an important regulatory layer associated with gene expression. Changed methylation status has been noted across diverse pathological states, including cancer. The rapid development and uptake of microarrays and large scale DNA sequencing has prompted an explosion of data analytic methods for processing and discovering changes in DNA methylation across varied data types. In this mini-review, we present a compact and accessible discussion of many of the salient challenges, such as experimental design, statistical methods for differential methylation detection, critical considerations such as cell type composition and the potential confounding that can arise from batch effects. From a statistical perspective, our main interests include the use of empirical Bayes or hierarchical models, which have proved immensely powerful in genomics, and the procedures by which false discovery control is achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165320 | PMC |
http://dx.doi.org/10.3389/fgene.2014.00324 | DOI Listing |
Clin Trials
January 2025
Rare Diseases Team, Office of New Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA.
Background/aims: Rare disease drug development faces unique challenges, such as genotypic and phenotypic heterogeneity within small patient populations and a lack of established outcome measures for conditions without previously successful drug development programs. These challenges complicate the process of selecting the appropriate trial endpoints and conducting clinical trials in rare diseases. In this descriptive study, we examined novel drug approvals for non-oncologic rare diseases by the U.
View Article and Find Full Text PDFIn the context of Chinese clinical texts, this paper aims to propose a deep learning algorithm based on Bidirectional Encoder Representation from Transformers (BERT) to identify privacy information and to verify the feasibility of our method for privacy protection in the Chinese clinical context. We collected and double-annotated 33,017 discharge summaries from 151 medical institutions on a municipal regional health information platform, developed a BERT-based Bidirectional Long Short-Term Memory Model (BiLSTM) and Conditional Random Field (CRF) model, and tested the performance of privacy identification on the dataset. To explore the performance of different substructures of the neural network, we created five additional baseline models and evaluated the impact of different models on performance.
View Article and Find Full Text PDFClin Trials
January 2025
Department of Biostatistics, University of Florida, Gainesville, FL, USA.
Introduction: The sequential parallel comparison design has emerged as a valuable tool in clinical trials with high placebo response rates. To further enhance its efficiency and effectiveness, adaptive strategies, such as sample size adjustment and allocation ratio modification can be employed.
Methods: We compared the performance of Jennison and Turnbull's method and the Promising Zone approach for sample size adjustment in a two-phase sequential parallel comparison design study.
Front Biosci (Landmark Ed)
January 2025
Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Fujian Medical University, Fujian Provincial Key Laboratory of Stomatology, National Regional Medical Center, Binhai Campus of The First Affiliated Hospital, 350005 Fuzhou, Fujian, China.
Background: In this study, we prepared a porous gradient scaffold with hydroxyapatite microtubules (HAMT) and chitosan (CHS) and investigated osteogenesis induced by these scaffolds.
Methods: The arrangement of wax balls in the mold can control the size and distribution of the pores of the scaffold, and form an interconnected gradient pore structure. The scaffolds were systematically evaluated and for biocompatibility, biological activity, and regulatory mechanisms.
Int J Stroke
January 2025
Medical University of South Carolina, Charleston, SC, USA.
Background: The usual antithrombotic treatment for symptomatic intracranial atherosclerotic stenosis (ICAS) consists of dual treatment with clopidogrel and aspirin for 90 days followed by aspirin alone but the risk of recurrent stroke remains high up to 12 months. The Comparison of Anticoagulation and anti-Platelet Therapies for Intracranial Vascular Atherostenosis (CAPTIVA) trial was designed to determine whether other combinations of dual antithrombotic therapy are superior to clopidogrel and aspirin.
Methods: CAPTIVA is an ongoing, prospective, double-blinded, three-arm clinical trial at over 100 sites in the United States and Canada that will randomize 1683 high-risk subjects with a symptomatic infarct attributed to 70-99% stenosis of a major intracranial artery to 12 months of treatment with (1) ticagrelor (180 mg loading dose, then 90 mg twice daily), (2) low-dose rivaroxaban (2.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!