We aimed to determine the impact of precursor pool dilution on the assessment of postprandial myofibrillar protein synthesis rates (MPS). A Holstein dairy cow was infused with large amounts of L-[1-(13)C]phenylalanine and L-[1-(13)C]leucine, and the milk was collected and fractionated. The enrichment levels in the casein were 38.7 and 9.3 mole percent excess, respectively. In a subsequent human experiment, 11 older men (age: 71 ± 1 y, body mass index: 26 ± 0.1 kg·m(-2)) received a primed constant infusion of L-[ring-(2)H5]phenylalanine and L-[1-(13)C]leucine. Blood and muscle samples were collected before and after the ingestion of 20-g doubly labeled casein to assess postprandial MPS based on the 1) constant tracer infusion of L-[ring-(2)H5]phenylalanine, 2) ingestion of intrinsically L-[1-(13)C]phenylalanine-labeled casein, and 3) constant infusion of L-[1-(13)C]leucine in combination with the ingestion of intrinsically L-[1-(13)C]leucine-labeled casein. Postprandial MPS was increased (P < 0.05) after protein ingestion (∼70% above postabsorptive values) based on the L-[1-(13)C]leucine tracer. There was no significant stimulation of postprandial MPS (∼27% above postabsorptive values) when the calculated fractional synthesis rate was based on the L-[ring-(2)H5]phenylalanine (P = 0.2). Comparisons of postprandial MPS based on the primed continuous infusion of L-[1-(13)C]leucine or the ingestion of intrinsically L-[1-(13)C]phenylalanine-labeled casein protein demonstrated differences compared with the primed continuous infusion of L-[ring-(2)H5]phenylalanine (P > 0.05). Our findings confirm that the postprandial MPS assessed using the primed continuous tracer infusion approach may differ if tracer steady-state conditions in the precursor pools are perturbed. The use of intrinsically doubly labeled protein provides a method to study the metabolic fate of the ingested protein and the subsequent postprandial MPS response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00411.2014 | DOI Listing |
Am J Physiol Cell Physiol
January 2025
Food for Health Ireland, University of Limerick, Ireland.
In this study we used an ex model to assess the effect of feeding older (50 - 70 y) adults a casein protein hydrolysate (CPH) compared with non-bioactive non-essential amino acid (NEAA) supplement on muscle protein synthesis (MPS) and markers of muscle protein breakdown (MPB). As a secondary objective, to assess any attenuation with aging, we compared the anabolic response to CPH-fed serum from older and young adults. Serum from seven healthy older and seven young men following overnight fast and 60 min postprandial ingestion of CPH or NEAA (0.
View Article and Find Full Text PDFPurpose: To meet the global dietary protein demands, a trend towards plant-based protein (PBP) sources to replace animal-derived protein is currently ongoing. However, PBPs may not have the same anabolic capacity to stimulate muscle protein synthesis (MPS) as dairy proteins. For vulnerable populations with specific medical needs, it is especially important to validate the anabolic properties of PBPs.
View Article and Find Full Text PDFJ Nutr
December 2024
Department of Nutrition Sciences and Health Behavior, University of Texas Medical Branch, Galveston, TX, United States.
Am J Clin Nutr
July 2024
Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, Hamilton, Ontario, Canada. Electronic address:
Background: Skeletal muscle mass is determined predominantly by feeding-induced and activity-induced fluctuations in muscle protein synthesis (MPS). Older individuals display a diminished MPS response to protein ingestion, referred to as age-related anabolic resistance, which contributes to the progression of age-related muscle loss known as sarcopenia.
Objectives: We aimed to determine the impact of consuming higher-quality compared with lower-quality protein supplements above the recommended dietary allowance (RDA) on integrated MPS rates.
Am J Clin Nutr
July 2024
Department of Sport and Health Sciences, Nutritional Physiology Research Group, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom. Electronic address:
The regulation of postprandial muscle protein synthesis (MPS) with or without physical activity has been an intensely studied area within nutrition and physiology. The leucine content of dietary protein and the subsequent plasma leucinemia it elicits postingestion is often considered the primary drivers of the postprandial MPS response. This concept, generally known as the leucine "trigger" hypothesis, has also been adopted within more applied aspects of nutrition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!