Niche-dependent regulations of metabolic balance in high-fat diet-induced diabetic mice by mesenchymal stromal cells.

Diabetes

Center for Stem Cell Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan Department of Ophthalmology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan

Published: March 2015

Mesenchymal stromal cells (MSCs) have great potential to maintain glucose homeostasis and metabolic balance. Here, we demonstrate that in mice continuously fed with high-fat diet (HFD) that developed non-insulin-dependent diabetes, two episodes of systemic MSC transplantations effectively improve glucose tolerance and blood glucose homeostasis and reduce body weight through targeting pancreas and insulin-sensitive tissues and organs via site-specific mechanisms. MSCs support pancreatic islet growth by direct differentiation into insulin-producing cells and by mitigating the cytotoxicity of interleukin 1 (IL-1) and tumor necrosis factor-α (TNF-α) in the pancreas. Localization of MSCs in the liver and skeletal muscles in diabetic animals is also enhanced and therefore improves glucose tolerance, although long-term engraftment is not observed. MSCs prevent HFD-induced fatty liver development and restore glycogen storage in hepatocytes. Increased expression of IL-1 receptor antagonist and Glut4 in skeletal muscles after MSC transplantation results in better blood glucose homeostasis. Intriguingly, systemic MSC transplantation does not alter adipocyte number, but it decreases HFD-induced cell infiltration in adipose tissues and reduces serum levels of adipokines, including leptin and TNF-α. Taken together, systemic MSC transplantation ameliorates HFD-induced obesity and restores metabolic balance through multisystemic regulations that are niche dependent. Such findings have supported systemic transplantation of MSCs to correct metabolic imbalance.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db14-1042DOI Listing

Publication Analysis

Top Keywords

metabolic balance
12
glucose homeostasis
12
systemic msc
12
msc transplantation
12
mesenchymal stromal
8
stromal cells
8
glucose tolerance
8
blood glucose
8
skeletal muscles
8
mscs
5

Similar Publications

Nanodrugs Targeting Key Factors of Ferroptosis Regulation for Enhanced Treatment of Osteoarthritis.

Adv Sci (Weinh)

January 2025

Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Department of Orthopedic Surgery, Hangzhou Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, 310000, China.

Osteoarthritis (OA) is a globally prevalent degenerative joint disease. Recent studies highlight the role of ferroptosis in OA progression. Targeting ferroptosis regulation presents a promising therapeutic strategy for OA; however, current research primarily focuses on single targets associated with ferroptosis.

View Article and Find Full Text PDF

Pizuglanstat is a novel hematopoietic prostaglandin D synthase inhibitor and investigational treatment for Duchenne muscular dystrophy. This Phase 1 mass balance study aimed to characterize the absorption, metabolism, and excretion of carbon-14 (C)-labeled pizuglanstat in healthy adults (ClinicalTrials.gov, NCT04825431).

View Article and Find Full Text PDF

The purpose of this review is to explore the relationship between weight loss (WL), specifically reductions in body mass index (BMI), and increases in testosterone levels. Obesity and excess body fat are linked to reduced testosterone levels, which can lead to metabolic dysfunctions, reduced libido, and diminished muscle mass. To attain this purpose, this review will summarize current evidence on how weight reduction interventions, including dietary changes, exercise, and bariatric surgery, affect testosterone production in overweight and obese individuals.

View Article and Find Full Text PDF

Introduction: Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health.

View Article and Find Full Text PDF

Background: The modern approach to treating rectal cancer, which involves total mesorectal excision directed by imaging assessments, has significantly enhanced patient outcomes. However, locally recurrent rectal cancer (LRRC) continues to be a significant clinical issue. Identifying LRRC through imaging is complex, due to the mismatch between fibrosis and inflammatory pelvic tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!