Small molecule BMH-compounds that inhibit RNA polymerase I and cause nucleolar stress.

Mol Cancer Ther

Center for Drug Research, University of Helsinki, Helsinki, Finland. Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.

Published: November 2014

Activation of the p53 pathway has been considered a therapeutic strategy to target cancers. We have previously identified several p53-activating small molecules in a cell-based screen. Two of the compounds activated p53 by causing DNA damage, but this modality was absent in the other four. We recently showed that one of these, BMH-21, inhibits RNA polymerase I (Pol I) transcription, causes the degradation of Pol I catalytic subunit RPA194, and has potent anticancer activity. We show here that three remaining compounds in this screen, BMH-9, BMH-22, and BMH-23, cause reorganization of nucleolar marker proteins consistent with segregation of the nucleolus, a hallmark of Pol I transcription stress. Further, the compounds destabilize RPA194 in a proteasome-dependent manner and inhibit nascent rRNA synthesis and expression of the 45S rRNA precursor. BMH-9- and BMH-22-mediated nucleolar stress was detected in ex vivo-cultured human prostate tissues indicating good tissue bioactivity. Testing of closely related analogues showed that their activities were chemically constrained. Viability screen for BMH-9, BMH-22, and BMH-23 in the NCI60 cancer cell lines showed potent anticancer activity across many tumor types. Finally, we show that the Pol I transcription stress by BMH-9, BMH-22, and BMH-23 is independent of p53 function. These results highlight the dominant impact of Pol I transcription stress on p53 pathway activation and bring forward chemically novel lead molecules for Pol I inhibition, and, potentially, cancer targeting.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4221476PMC
http://dx.doi.org/10.1158/1535-7163.MCT-14-0256DOI Listing

Publication Analysis

Top Keywords

pol transcription
16
bmh-9 bmh-22
12
bmh-22 bmh-23
12
transcription stress
12
rna polymerase
8
nucleolar stress
8
p53 pathway
8
potent anticancer
8
anticancer activity
8
screen bmh-9
8

Similar Publications

Background: Eukaryotic RNA polymerase I consists of 12 or 11 core subunits and three dissociable subunits, Rrn3, A34, and A49. The A34 and A49 subunits exist as a heterodimer. In silico analysis of the A34 family of transcription factors demonstrates a commonly shared domain structure despite a lack of sequence conservation, as well as N-terminal and C-terminal disordered regions.

View Article and Find Full Text PDF

Epigenetic Mechanisms in the Transcriptional Regulation of Circadian Rhythm in Mammals.

Biology (Basel)

January 2025

Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China.

Almost all organisms, from the simplest bacteria to advanced mammals, havea near 24 h circadian rhythm. Circadian rhythms are highly conserved across different life forms and are regulated by circadian genes as well as by related transcription factors. Transcription factors are fundamental to circadian rhythms, influencing gene expression, behavior in plants and animals, and human diseases.

View Article and Find Full Text PDF

SPT5 regulates RNA polymerase II stability via Cullin 3-ARMC5 recognition.

Sci Adv

January 2025

Simpson Querrey Institute for Epigenetics, Department of Biochemistry and Molecular Genetics Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.

The stability of RNA polymerase II (Pol II) is tightly regulated during transcriptional elongation for proper control of gene expression. Our recent studies revealed that promoter-proximal Pol II is destabilized via the ubiquitin E3 ligase cullin 3 (CUL3) upon loss of transcription elongation factor SPT5. Here, we investigate how CUL3 recognizes chromatin-bound Pol II as a substrate.

View Article and Find Full Text PDF

Cancer stem cells (CSCs) are cancer cells responsible for cancer initiation, growth, metastasis, recurrence and resistance to treatment. OCT4 and c-MYC are widely accepted as CSC markers. In this study, we examined the immunohistochemical co-expression of c-MYC and OCT4 with Ki-67 in colorectal cancers (CRC) and the relationship between the results and prognostic and therapeutic data.

View Article and Find Full Text PDF

The role of cancer stem cells (CSC) in oral cancer is widely accepted. Yet, the existence of CSC in dysplastic tissue and the molecular pathways of progression from dysplasia to malignancy remain to be explored. Our retrospective study aimed to analyze the presence of CSC in oral epithelial dysplasia and oral squamous cell carcinoma (OSCC) concerning two epithelial-mesenchymal transition markers: Snail and E-cadherin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!