Background: Visceral leishmaniasis (VL) is a deadly parasitic diseases caused by Leishmania donovani; it is a major health problem in many countries. A lack of proper understanding of the disease biology, poor diagnostic methods and increasing drug resistance are the main reasons for the growing burden of VL infection. Comparative plasma proteomics are a relatively useful technique that can be used to investigate disease-associated alterations that can help in understanding host responses against pathogens, and might be useful in disease management and diagnosis.
Result: In this study, a comparative proteomics and glycoproteomics approach using 2DE and 2D-DIGE was employed between early diagnosed VL patients of all age groups and healthy endemic and non-endemic controls in order to aid the recognition of disease-associated alterations in host plasma. Comparative proteomics was performed by the depletion of seven highly abundant plasma proteins. Comparative glycoproteomics was performed by the depletion of albumin and IgG, followed by purification of plasma glycoproteins using a multi lectin affinity column. From these two approaches, 39 differentially expressed protein spots were identified and sequenced using MALDI-TOF/TOF mass spectrometry. This revealed ten distinct proteins that appeared in multiple spots, suggesting micro-heterogeneity. Among these proteins, alpha-1-antitrypsin, alpha-1-B glycoprotein and amyloid-A1 precursor were up-regulated, whereas vitamin-D binding protein, apolipoprotein-A-I and transthyretin were down-regulated in VL. Alterations in the levels of these proteins in VL-infected plasma were further confirmed by western blot and ELISA.
Conclusions: These proteins may be involved in the survival of parasites, resisting neutrophil elastase, and in their multiplication in macrophages, potentially maintaining endogenous anti-inflammatory and immunosuppressive conditions. Consequently, the results of this study may help in understanding the host response against L.donovani, which could help in the discovery of new drugs and disease management. Finally, these alterations on protein levels might be beneficial in improving early diagnosis considering those as biomarkers in Indian VL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4179796 | PMC |
http://dx.doi.org/10.1186/s12953-014-0048-z | DOI Listing |
Front Immunol
January 2025
Department of Endocrinology and Metabolism, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
Objective: The pathogenesis of AITD remains unclear to date. This study employs a combination of proteomics and transcriptomics analysis to identify and validate specific immune response markers in patients with hyperthyroidism and hypothyroidism, thereby providing a scientific basis for the clinical diagnosis and treatment of AITD.
Methods: By collecting serum and whole blood tissue samples from patients with hyperthyroidism, hypothyroidism, and healthy controls, this study utilizes a combination of transcriptomics and proteomics to analyze changes in immune-related signaling molecules in patients.
Front Mol Biosci
January 2025
Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
Background: Breast cancer is one of the most prevalent malignancies and a leading cause of death among women worldwide. Among its subtypes, triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive behavior and limited treatment options. This study aimed to investigate the effects of doxorubicin (DOX) and 5-fluorouracil (5-FU) as monotherapies and in combination using an established MDA-MB-231 xenograft model in female BALB/C nude mice employing advanced metabolomics analysis to identify molecular alterations induced by these treatments.
View Article and Find Full Text PDFNat Methods
January 2025
Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The phenotypic and functional states of cells are modulated by a complex interactive molecular hierarchy of multiple omics layers, involving the genome, epigenome, transcriptome, proteome and metabolome. Spatial omics approaches have enabled the study of these layers in tissue context but are often limited to one or two modalities, offering an incomplete view of cellular identity. Here we present spatial-Mux-seq, a multimodal spatial technology that allows simultaneous profiling of five different modalities: two histone modifications, chromatin accessibility, whole transcriptome and a panel of proteins at tissue scale and cellular level in a spatially resolved manner.
View Article and Find Full Text PDFJ Adv Res
January 2025
Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:
Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.
Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.
Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.
Introduction: The infarcted heart is energetically compromised exhibiting a deficient production of adenosine triphosphate (ATP) and the ensuing impaired contractile function. Short-term blockade of the protein S100A9 improves cardiac performance in mice after myocardial infarction (MI). The implications upon ATP production during this process are not known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!