Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A confocal Raman microscopic technique was optimized to more efficiently detect amorphous-amorphous phase separation in freeze-dried protein formulations. A Renishaw Raman inVia confocal microscope was used to collect 100-200 μm line maps (2 μm step size) of freeze-dried protein-excipient formulations. At each point across the line map, the composition was evaluated from the intensity of the nonoverlapping peaks representative of each component. Collection aperture, scan time, and line map length significantly contributed to the phase-separation analysis, whereas different sample preparation methods did not affect the analysis. Using the optimized parameters (i.e., large aperture 5 s scan time, 200 μm line map), phase separation was successfully detected in binary polymer formulations and was comparable to the previously developed Raman method. However, the previous method required 2.5 h/sample, whereas the optimized method only requires 0.5 h/sample. Phase separation was detected in the following protein-excipient formulations: lysozyme-trehalose (1:1), lysozyme-isomaltose (1:1), β-lactoglobulin-dextran (1:1), β-lactoglobulin-dextran (1:3), and β-lactoglobulin-trehalose (1:1). Phase separation was not detected in lysozyme-sucrose (1:1) and β-lactoglobulin-sucrose (1:1) formulations. The optimized method successfully detected phase separation in several protein formulations, where phase separation was previously suspected, and promised to be a useful tool for detection of phase separation in amorphous therapeutic formulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jps.23882 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!