Using whole-blood transcriptional profiling, we investigated differences in the host response to vaccination and challenge in a rhesus macaque AIDS vaccine trial. Samples were collected from animals prior to and after vaccination with live, irradiated vaccine cells secreting the modified endoplasmic reticulum chaperone gp96-Ig loaded with simian immunodeficiency virus (SIV) peptides, either alone or in combination with a SIV-gp120 protein boost. Additional samples were collected following multiple low-dose rectal challenges with SIVmac251. Animals in the boosted group had a 73% reduced risk of infection. Surprisingly, few changes in gene expression were observed during the vaccination phase. Focusing on postchallenge comparisons, in particular for protected animals, we identified a host response signature of protection comprised of strong interferon signaling after the first challenge, which then largely abated after further challenges. We also identified a host response signature, comprised of early macrophage-mediated inflammatory responses, in animals with undetectable viral loads 5 days after the first challenge but with unusually high viral titers after subsequent challenges. Statistical analysis showed that prime-boost vaccination significantly lowered the probability of infection in a time-consistent manner throughout several challenges. Given that humoral responses in the prime-boost group were highly significant prechallenge correlates of protection, the strong innate signaling after the first challenge suggests that interferon signaling may enhance vaccine-induced antibody responses and is an important contributor to protection from infection during repeated low-dose exposure to SIV.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4248781 | PMC |
http://dx.doi.org/10.1128/CVI.00455-14 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!