Background: Dideoxy-based chain termination sequencing developed by Sanger is the gold standard sequencing approach and allows clinical diagnostics of disorders with relatively low genetic heterogeneity. Recently, new next generation sequencing (NGS) technologies have found their way into diagnostic laboratories, enabling the sequencing of large targeted gene panels or exomes. The development of benchtop NGS instruments now allows the analysis of single genes or small gene panels, making these platforms increasingly competitive with Sanger sequencing.

Methods: We developed a generic automated ion semiconductor sequencing work flow that can be used in a clinical setting and can serve as a substitute for Sanger sequencing. Standard amplicon-based enrichment remained identical to PCR for Sanger sequencing. A novel postenrichment pooling strategy was developed, limiting the number of library preparations and reducing sequencing costs up to 70% compared to Sanger sequencing.

Results: A total of 1224 known pathogenic variants were analyzed, yielding an analytical sensitivity of 99.92% and specificity of 99.99%. In a second experiment, a total of 100 patient-derived DNA samples were analyzed using a blind analysis. The results showed an analytical sensitivity of 99.60% and specificity of 99.98%, comparable to Sanger sequencing.

Conclusions: Ion semiconductor sequencing can be a first choice mutation scanning technique, independent of the genes analyzed.

Download full-text PDF

Source
http://dx.doi.org/10.1373/clinchem.2014.225250DOI Listing

Publication Analysis

Top Keywords

ion semiconductor
12
semiconductor sequencing
12
sequencing
10
gene panels
8
sanger sequencing
8
analytical sensitivity
8
sanger
6
translating sanger-based
4
sanger-based routine
4
routine dna
4

Similar Publications

pH sensing technology is pivotal for monitoring aquatic ecosystems and diagnosing human health conditions. Indium-gallium-zinc oxide electrolyte-gated thin-film transistors (IGZO EGTFTs) are highly regarded as ion-sensing devices due to the pH-dependent surface chemistry of their sensing membranes. However, applying EGTFT-based pH sensors in complex biofluids containing diverse charged species poses challenges due to ion interference and inherently low sensitivity constrained by the Nernst limit.

View Article and Find Full Text PDF

Silicone gel, used in the packaging of high-voltage, high-power semiconductor devices, generates bubbles during the packaging process, which accelerates the degradation of its insulation properties. This paper establishes a testing platform for electrical treeing in silicone gel under pulsed electric fields, investigating the effect of pulse voltage amplitude on bubble development and studying the initiation and growth of electrical treeing in a silicone gel with different pulse edge times. The relationship between bubbles and electrical treeing in silicone gel materials is discussed.

View Article and Find Full Text PDF

Research on perovskite light-emitting diodes (PeLEDs) has primarily focused on modulating crystal growth to achieve smaller grain sizes and defect passivation using organic additives. However, challenges remain in controlling the intermolecular interactions between these organic additives and perovskite precursor ions for precise modulation of crystal growth. In this study, we synthesize two triphenylphosphine oxide (TPPO)-based multidentate additives: bidentate hexane-1,6-diyl-bis(oxy-4-triphenylphosphine oxide) (2-TPPO) and tetradentate pentaerythrityl-tetrakis(oxy-4-triphenylphosphine oxide) (4-TPPO).

View Article and Find Full Text PDF

The synergistic effect induced by "Z-bond" between cations and anions achieving a highly reversible zinc anode.

J Colloid Interface Sci

December 2024

Zhejiang Provincial Engineering Research Center of Oxide Semiconductors for Environmental and Optoelectronic Applications, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, PR China; State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China. Electronic address:

Due to their high energy density, low cost, and environmental friendliness, aqueous zinc-ion batteries are considered a potential alternative to Li-ion batteries. However, dendrite growth and parasitic reactions of water molecules limit their practical applications. Herein, an ionic liquid additive, 1-butyl-3-methylimidazolium Bis(fluorosulfonyl)imide (BMImFSI), is introduced to regulate the electrical double layer (EDL).

View Article and Find Full Text PDF

Organic Iono-Optoelectronics: From Electrochromics to Artificial Retina.

Acc Chem Res

December 2024

Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.

ConspectusOrganic mixed ionic electronic conductors (OMIECs) represent an exciting and emerging class of materials that have recently revitalized the field of organic semiconductors. OMIECs are particularly attractive because they allow both ionic and electronic transport while retaining the inherent benefits of organic semiconducting materials such as mechanical conformability and biocompatibility. These combined properties make the OMIECs ideal for applications in bioelectronics, energy storage, neuromorphic computing, and electrochemical transistors for sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!