In surficial environments, the fate of many elements is influenced by their interactions with the phyllomanganate vernadite, a nano-sized and turbostratic variety of birnessite. To advance our understanding of the surface reactivity of vernadite as a function of pH, synthetic vernadite (δ-MnO2) was equilibrated at pH ranging from 3 to 10 and characterized structurally using chemical methods, thermogravimetry and modelling of powder X-ray diffraction (XRD) patterns. With decreasing pH, the number of vacant layer sites increases in the octahedral layers of δ-MnO2 (from 0.14 per layer octahedron at pH 10 to 0.17 at pH 3), whereas the number of layer Mn(3+) is, within errors, equal to 0.12 per layer octahedron over the whole pH range. Vacant layer sites are capped by interlayer Mn(3+) sorbed as triple corner-sharing surface complexes (TC sites). The increasing number of interlayer Mn(3+) with decreasing pH (from 0.075 per layer octahedron at pH 10 to 0.175 at pH 3) results in the decrease of the average Mn oxidation degree (from 3.80 ± 0.01 at pH 10 to 3.70 ± 0.01 at pH 3) and in the lowering of the Na/Mn ratio (from 27.66 ± 0.20 at pH 10 to 6.99 ± 0.16 at pH 3). In addition, in-plane unit-cell parameters are negatively correlated to the number of interlayer Mn at TC sites and decrease with decreasing pH (from b = 2.842 Å at pH 10 to b = 2.834 Å at pH 3), layer symmetry being systematically hexagonal with a = b × 3(1/2). Finally, modelling of X-ray diffraction (XRD) patterns indicates that crystallite size in the ab plane and along the c* axis decreases with decreasing pH, ranging respectively from 7 nm to 6 nm, and from 1.2 nm to 1.0 nm (pH 10 and 3, respectively). Following their characterization, dry samples were sealed in polystyrene vials, kept in the dark, and re-analysed 4 and 8 years later. With ageing time and despite the dry state, layer Mn(3+) extensively migrates to the interlayer most likely to minimize steric strains resulting from the Jahn-Teller distortion of Mn(3+) octahedra. When the number of interlayer Mn(3+) at TC sites resulting from this migration reaches the maximum value of ∼ 1/3 per layer octahedron, interlayer species from adjacent layers share their coordination sphere, resulting in cryptomelane-like tunnel structure fragments (with a 2  × 2 tunnel size) with a significantly improved layer stacking order.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2052520614013687DOI Listing

Publication Analysis

Top Keywords

layer octahedron
16
interlayer mn3+
12
number interlayer
12
layer
11
x-ray diffraction
8
diffraction xrd
8
xrd patterns
8
vacant layer
8
layer sites
8
layer mn3+
8

Similar Publications

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate.

View Article and Find Full Text PDF

Transition-metal layered double hydroxides are widely utilized as electrocatalysts for the oxygen evolution reaction (OER), undergoing dynamic transformation into active oxyhydroxides during electrochemical operation. Nonetheless, our understanding of the non-equilibrium structural changes that occur during this process remains limited. In this study, utilizing in situ energy-dispersive X-ray absorption spectroscopy and machine learning analysis, we reveal the occurrence of deprotonation and elucidate the role of incorporated iron in facilitating the transition from nickel-iron layered double hydroxide (NiFe LDH) into its active oxyhydroxide.

View Article and Find Full Text PDF

A Two-Dimensional Layered Heteropolyoxoniobate Based on Cubic Sn(IV)-Containing {SnNbO} Cages with Good Proton Conductivity Property.

Inorg Chem

December 2024

Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian350108, China.

The first example of a Sn(IV)-containing heteropolyoxoniobate KH[Cu(en)]{[Sn(OH)] (HNbO)}·2en·88HO () is built from nanoscale high-nuclearity cubic {[Sn(OH)](HNbO)} cluster and [Cu(en)] complexes. The cubic {[Sn(OH)](HNbO)} cage is composed of eight {NbO} clusters and 12 SnO octahedrons. The eight {NbO} fragments are situated at the vertices of the cubic cage, while the 12 SnO octahedrons are positioned along the edges of the cubic cage.

View Article and Find Full Text PDF

Design of Two-Dimensional Hybrid Perovskites with Giant Spin Splitting and Persistent Spin Textures.

J Am Chem Soc

December 2024

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.

Semiconductors with large energetic separation Δ of energy sub-bands with distinct spin expectation values (spin textures) represent a key target to enable control over spin transport and spin-optoelectronic properties. While the paradigmatic case of symmetry-dictated Rashba spin splitting and associated spin textures remains the most explored pathway toward designing future spin-transport-based quantum information technologies, controlling spin physics beyond the Rashba paradigm by accessing strategically targeted crystalline symmetries holds significant promise. In this paper, we show how breaking the traditional paradigm of octahedron-rotation based structure distortions in 2D organic-inorganic perovskites (2D-OIPs) can facilitate exceptionally large spin splittings (Δ > 400 meV) and spin textures with extremely short spin helix lengths ( ∼ 5 nm).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!