The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nature13767 | DOI Listing |
is an important spice and medicinal plant widely utilized in East and Southeast Asia. Non-targeted metabolomics techniques were employed to study the variations in the content and composition of essential oil from during drying at different temperatures: 40°C, 50°C, 60°C, and 70°C. A total of 260 metabolites were detected using gas chromatography-mass spectrometry (GC-MS), mainly terpenoids and aldehydes.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences Langfang Hebei 065007 China.
Supercritical CO, as an environmentally friendly and pollution-free fluid, has been applied in various EOR techniques such as CO flooding. However, the low viscosity of the gas leads to issues such as early breakthrough, viscous fingering, and gravity override in practical applications. Although effective mobility-control methods, such as CO WAG (water alternating gas)-, CO foam-, and gel-based methods, have been developed to mitigate these phenomena, they do not fundamentally solve the problem of the high gas-oil mobility ratio, which leads to reduced gas sweep efficiency.
View Article and Find Full Text PDFHeliyon
January 2025
Shale Gas Research Institute of PetroChina Southwest Oil & Gas Field Company, Chengdu, Sichuan, 610051, China.
The mechanical properties of multi-lithologic reservoir rock masses are complex, and the failure mechanism is not clear. This research belongs to the field of oil and gas exploration and development. Brazilian splitting, and digital image correlation (DIC) tests were performed to study the mechanical properties and failure mechanism of assemblages containing sandstone, shale, and limestone.
View Article and Find Full Text PDFHeliyon
January 2025
Centre for Nature Positive Solutions, School of Science, STEM College, RMIT University, Melbourne, Australia.
Seaweed aquaculture is growing 8.9 % annually to a forecast US$ 22.13 billion in 2024 and has several environmental, economic and social co-benefits.
View Article and Find Full Text PDFChem Asian J
January 2025
Shenzhen Polytechnic University, Hoffmann Institute of Advanced Materials, 7098 Liuxian Blvd., 518055, Shenzhen, CHINA.
The purification of polymer-grade (>99.9%) olefins (mostly C2 and C3) represents a significant yet challenging process in petrochemical industry. The commonly employed method for hydrocarbon separation involves heat-driven distillations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!