A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Can multiple SNP testing in BRCA2 and BRCA1 female carriers be used to improve risk prediction models in conjunction with clinical assessment? | LitMetric

Background: Several single nucleotide polymorphisms (SNPs) at different loci have been associated with breast cancer susceptibility, accounting for around 10% of the familial component. Recent studies have found direct associations between specific SNPs and breast cancer in BRCA1/2 mutation carriers. Our aim was to determine whether validated susceptibility SNP scores improve the predictive ability of risk models in comparison/conjunction to other clinical/demographic information.

Methods: Female BRCA1/2 carriers were identified from the Manchester genetic database, and included in the study regardless of breast cancer status or age. DNA was extracted from blood samples provided by these women and used for gene and SNP profiling. Estimates of survival were examined with Kaplan-Meier curves. Multivariable Cox proportional hazards models were fit in the separate BRCA datasets and in menopausal stages screening different combinations of clinical/demographic/genetic variables. Nonlinear random survival forests were also fit to identify relevant interactions. Models were compared using Harrell's concordance index (1 - c-index).

Results: 548 female BRCA1 mutation carriers and 523 BRCA2 carriers were identified from the database. Median Kaplan-Meier estimate of survival was 46.0 years (44.9-48.1) for BRCA1 carriers and 48.9 (47.3-50.4) for BRCA2. By fitting Cox models and random survival forests, including both a genetic SNP score and clinical/demographic variables, average 1 - c-index values were 0.221 (st.dev. 0.019) for BRCA1 carriers and 0.215 (st.dev. 0.018) for BRCA2 carriers.

Conclusions: Random survival forests did not yield higher performance compared to Cox proportional hazards. We found improvement in prediction performance when coupling the genetic SNP score with clinical/demographic markers, which warrants further investigation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4197237PMC
http://dx.doi.org/10.1186/1472-6947-14-87DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
random survival
12
survival forests
12
mutation carriers
8
carriers identified
8
cox proportional
8
proportional hazards
8
brca1 carriers
8
genetic snp
8
snp score
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!