The cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel is a membrane-integral protein that belongs to the ATP-binding cassette superfamily. Mutations in the CFTR gene cause cystic fibrosis in which salt, water, and protein transports are defective in various tissues. To investigate the conformation of the CFTR in the membrane, we applied the small-angle x-ray scattering (SAXS) technique on microsomal membranes extracted from NIH/3T3 cells permanentely transfected with wild-type (WT) CFTR and with CFTR carrying the ΔF508 mutation. The electronic density profile of the membranes was calculated from the SAXS data, assuming the lipid bilayer electronic density to be composed by a series of Gaussian shells. The data indicate that membranes in the microsome vesicles, that contain mostly endoplasmic reticulum membranes, are oriented in the outside-out conformation. Phosphorylation does not change significantly the electronic density profile, while dephosphorylation produces a significant modification in the inner side of the profile. Thus, we conclude that the CFTR and its associated protein complex in microsomes are mostly phosphorylated. The electronic density profile of the ΔF508-CFTR microsomes is completely different from WT, suggesting a different assemblage of the proteins in the membranes. Low-temperature treatment of cells rescues the ΔF508-CFTR protein, resulting in a conformation that resembles the WT. Differently, treatment with the corrector VX-809 modifies the electronic profile of ΔF508-CFTR membrane, but does not recover completely the WT conformation. To our knowledge, this is the first report of a direct physical measurement of the structure of membranes containing CFTR in its native environment and in different functional and pharmacological conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11113906PMC
http://dx.doi.org/10.1007/s00018-014-1747-4DOI Listing

Publication Analysis

Top Keywords

electronic density
16
cystic fibrosis
12
density profile
12
functional pharmacological
8
fibrosis transmembrane
8
transmembrane conductance
8
conductance regulator
8
profile Δf508-cftr
8
cftr
7
membranes
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!