The reaction C3(a(3)Πu) + C2H2 → C5H + H was investigated at collision energy 10.9 kcal mol(-1) that is less than the enthalpy of ground-state reaction C3(X(1)Σg (+)) + C2H2 → C5H + H. C3(a(3)Πu) radicals were synthesized from 1% C4F6/He by pulsed high-voltage discharge. The title reaction was conducted in a crossed molecular-beam apparatus equipped with a quadrupole-mass filter. Product C5H was interrogated with time-of-flight spectroscopy and synchrotron vacuum-ultraviolet ionization. Reactant C3(a(3)Πu) and product C5H were identified using photoionization spectroscopy. The ionization thresholds of C3(X(1)Σg(+)) and C3(a(3)Πu) are determined as 11.6 ± 0.2 eV and 10.0 ± 0.2 eV, respectively. The C5H product is identified as linear pentynylidyne that has an ionization energy 8.4 ± 0.2 eV. The title reaction releases translational energy 10.6 kcal mol(-1) in average and has an isotropic product angular distribution. The quantum-chemical calculation indicates that the C3(a(3)Πu) radical attacks one of the carbon atoms of C2H2 and subsequently a hydrogen atom is ejected to form C5H + H, in good agreement with the experimental observation. As far as we are aware, the C3(a(3)Πu) + C2H2 reaction is investigated for the first time. This work gives an implication for the formation of C5H from the C3(a(3)Πu) + C2H2 reaction occurring in a combustion or discharge process of C2H2.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4896618DOI Listing

Publication Analysis

Top Keywords

c3a3Πu c2h2
12
c2h2 →
8
→ c5h
8
kcal mol-1
8
c5h c3a3Πu
8
title reaction
8
product c5h
8
c2h2 reaction
8
c3a3Πu
7
c5h
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!