Little is known about the process of sex determination at the molecular level in Metaseiulus occidentalis, a parahaploid species and natural enemy of phytophagous pest mites. Detailed knowledge of the sex-determination pathway could allow genetic manipulation of M. occidentalis to produce more female offspring, which could improve its effectiveness as a biological control agent. RNA interference is useful for assessing the function of putative sex-determination genes by reducing or eliminating gene expression. In many insect species the transformer-2 (tra-2) gene is an upstream regulatory element in the sex-determination cascade, and knockdown of tra-2 expression can alter the sex ratio. We assessed whether oral delivery of tra-2 double-stranded RNA to M. occidentalis virgin females would affect the sex of her progeny. Females that ingested tra-2 dsRNA produced significantly fewer eggs compared to control females suggesting that tra-2 is somehow involved in reproduction by females. However, the sex ratio of the few progeny that were laid was not altered, so it is unclear whether tra-2 is involved in sex determination. This is an initial step towards elucidating the molecular components of sex determination in M. occidentalis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10493-014-9852-5 | DOI Listing |
J Ultrasound
January 2025
Department of Medical Imaging, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
This systematic review and meta-analysis aimed to assess the accuracy and success rate of ultrasound in determining fetal sex. A search was conducted on Medline, Cochrane Library, and EMBASE databases, and the reference lists of selected studies were also reviewed. Meta-analyses were performed using Revman 5.
View Article and Find Full Text PDFMil Med
January 2025
Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
Introduction: Vaccine mandates have been used to minimize the duty days lost and deaths attributable to infectious disease among active duty Service members (ADSMs). In response to the global COVID-19 pandemic, in August 2021, the U.S.
View Article and Find Full Text PDFHGG Adv
January 2025
Department of Surgery, Division of Orthopaedics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA. Electronic address:
SOX9 encodes an SRY-related transcription factor critical for chondrogenesis and sex determination among other processes. Loss-of-function variants cause campomelic dysplasia and Pierre Robin Sequence, while both gain- and loss-of-function variants cause disorders of sex development. SOX9 has also been linked to scoliosis and cancers, but variants are undetermined.
View Article and Find Full Text PDFDev Cell
January 2025
Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076 Tübingen, Germany. Electronic address:
In many multicellular organisms, sexual development is not determined by XX/XY or ZW/ZZ systems but by U/V sex chromosomes. In U/V systems, sex determination occurs in the haploid phase, with U chromosomes in females and V chromosomes in males. Here, we explore several male, female, and partially sex-reversed male lines of giant kelp to decipher how U/V sex chromosomes and autosomes initiate male versus female development.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell Biology, Duke University Medical Center, Durham, NC 27701.
In species with genetic sex determination (GSD), the sex identity of the soma determines germ cell fate. For example, in mice, XY germ cells that enter an ovary differentiate as oogonia, whereas XX germ cells that enter a testis initiate differentiation as spermatogonia. However, numerous species lack a GSD system and instead display temperature-dependent sex determination (TSD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!