Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The objective of this study was to determine the influence of mechanical stresses simulating gastrointestinal contraction forces of 2.0 N (stomach) and 1.2 N (intestine) on the gel properties and drug release characteristics from sustained release swelling and eroding hydrophilic matrices during dissolution studies. Two batches of tetracycline-sustained release tablets containing hydroxypropyl methyl cellulose (HPMC) were manufactured and subjected to USP apparatus II (pH 2.2 buffer) dissolution studies. Hydrated tablets were periodically removed, placed in a petri dish, and multiple times (six cycle) compressed with a flat-ended probe (diameter 1.3 cm) on a texture analyzer at preprogrammed force of either 2.0 or 1.2 N to determine force-distance profiles and changes in drug release rate. The calculated similarity factor values showed dissimilar dissolution profiles using standard dissolution profile as a reference. The similarity factor (f2) values were especially lower than 50 at 2.0 N and, when profiles between the two batches compressed at 1.2 and 2.0 N, were compared with each other. The changes in dissolution pattern and release rate were significantly different after 4 h of dissolution. At 8 h, tablets were fully hydrated and no force could be detected by the probe, indicating a very soft gel matrix. It appears that the contraction forces in the stomach and intestine are capable of altering drug release from modified release hydrophilic matrices during transit in the human GI tract. Accounting for these forces during dissolution can enhance predictions of in vivo drug release, achieve better in vitro and in vivo correlation, introduce improvement in dissolution methods, and better understand the critical quality attributes (CQAs) and factors in quality by design (QbD) during the product development process.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4370966 | PMC |
http://dx.doi.org/10.1208/s12249-014-0225-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!