This article aimed to study the antigenicity of nucleocapsid proteins (NPs) in six pathogenic phleboviruses and to provide theoretical evidence for the development of serological diagnostic reagents. NPs of six pathogenic phleboviruses were expressed and purified using a prokaryotic expression system and rabbits were immunized with individual recombinant NPs. Cross-reactions among NPs and rabbit sera were determined by both indirect ELISA and Western blotting analyses, and the sera titer was determined by indirect ELISA. Furthermore, sera from SFTS patients were also detected by each recombinant NP as a coating antigen using indirect ELISA. The cross-reactions and the sera titer were subsequently determined. Both the concentration and purity of recombinant NPs of six pathogenic phleboviruses met the standards for immunization and detection. The results of indirect ELISA and Western blotting showed that each anti-phlebovirus NP rabbit immune serum had potential serological cross-reactivity with the other five virus NP antigens. Furthermore, the sera from SFTS patients also had cross-reactivity with the other five NP antigens to a certain extent. Our preliminary study evaluated the antigenicity and immune reactivity of six pathogenic phleboviruses NPs and laid the foundation for the development of diagnostic reagents.
Download full-text PDF |
Source |
---|
Viruses
December 2024
Department of Internal Medicine, College of Medicine, Chosun University, Gwangju 61453, Republic of Korea.
Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.
View Article and Find Full Text PDFPathogens
December 2024
Laboratory of Virology, National Institute for Infectious Disease "Lazzaro Spallanzani"-IRCCS, 00149 Rome, Italy.
Rift Valley Fever virus (RVFV) is a mosquito-borne virus with high pathogenic potential in ruminants and humans. Due to its high potential for spreading, it is considered a priority pathogen, and it is included in the Bluepoint list of the World Health Organization (WHO). Given the high pathogenic potential of the virus, it is crucial to develop a rapid heat-mediated inactivation protocol to create a safer working environment, particularly in medical facilities that lack a biosafety level 3 laboratory required for direct handling of RVFV.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2025
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
The role of farmed animals in the viral spillover from wild animals to humans is of growing importance. Between July and September of 2023 infectious disease outbreaks were reported on six Arctic fox () farms in Shandong and Liaoning provinces, China, which lasted for 2-3 months and resulted in tens to hundreds of fatalities per farm. Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) was identified in tissue/organ and swab samples from all the 13 foxes collected from these farms.
View Article and Find Full Text PDFMethods Mol Biol
December 2024
Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.
Rift Valley fever virus (RVFV) is an important livestock and human pathogen. It is also a potential bioweapon owing to its ability to spread by aerosols. It is an enveloped virus containing surface protrusions composed of two viral glycoproteins, G and G; the viral core contains ribonucleoprotein complexes.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France.
Rift Valley fever (RVF) is one of the major viral arthropod-borne diseases in Africa. In recent decades, RVF virus (RVFV), the causative agent of RVF, has been responsible for multiple outbreaks in West Africa with important consequences on human and animal health. In particular, an outbreak occurred in 2010 after heavy rains in the desertic region of Adrar, Mauritania.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!