Rolling circle amplification (RCA) is a newly developed experimental technique that can specific ally amplify circular DNA. Since 2008, RCA has been extensively used in hepatitis B virus (HBV) research, such as the amplification of the full-length sequence of the HBV genome, and the analysis of the drug-resistant mutations of HBV covalently closed circular DNA (cccDNA), amongst others. To create an easy assay for the analysis of duck hepatitis B virus (DHBV) cccDNA, this study established an RCA-based method. DHBV cccDNA was amplified from the DHBV DNA samples of duck liver with four pairs of sulfur-modified primers, which were designed according to the highly conserved sequence of DHBV using sera DHBV DNA as the negative control. DHBV cccDNA was detected in the obtained RCA products by the sequencing of RCA amplicons that were amplified with primer pairs on both sides of the gap of DH BV relaxed circular DNA, rather than by digesting RCA products with a restriction enzyme. The liver and sera DHBV DNA samples of 39 ducks infected with DHBV were examined with the RCA-based DHBV cccDNA detection method, and the results showed that while DHBV cccDNA was detected from all 39 liver DHBV DNA samples, no DHBV cccDNA was found in any of the sera DHBV DNA samples. These results suggest that the method established in the study is highly specific and sensitive for the detection of DHBV cccDNA. The establishment of this RCA-based DHBV method for cccDNA detection lays the groundwork for using a DHBV model to study the role of cccDNA in the pathogenesis of hepatitis B and to evaluate the effect of anti-virus therapies.
Download full-text PDF |
Source |
---|
Methods Mol Biol
July 2024
Liver Research Center, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, RI, USA.
Duck hepatitis B virus (DHBV) is an avian member of the hepatotropic DNA viruses, or hepadnaviridae. It shares with the human hepatitis B virus (HBV) a similar genomic organization and replication strategy via reverse transcription, but is simpler than HBV in lacking the X gene and in expressing just two coterminal envelope proteins: Large (L) and small (S). DHBV has been extensively used as a convenient and valuable animal model for study of the hepadnaviral life cycle, and for drug screening in vitro but also in vivo.
View Article and Find Full Text PDFmBio
April 2023
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) is the major obstacle to curing chronic hepatitis B (CHB). Current cccDNA detection methods are mostly based on biochemical extraction and bulk measurements. They nevertheless generated a general sketch of its biological features.
View Article and Find Full Text PDFJ Virol
December 2022
Baruch S. Blumberg Institute, Doylestown, Pennsylvania, USA.
Hepatitis B virus (HBV) replicates its genomic DNA by reverse transcription of an RNA intermediate, termed pregenomic RNA (pgRNA), within nucleocapsid. It had been shown that transfection of -transcribed pgRNA initiated viral replication in human hepatoma cells. We demonstrated here that viral capsids, single-stranded DNA, relaxed circular DNA (rcDNA) and covalently closed circular DNA (cccDNA) became detectable sequentially at 3, 6, 12, and 24 h post-pgRNA transfection into Huh7.
View Article and Find Full Text PDFJ Gen Virol
April 2022
Department of Virology II, National Institute of Infectious Diseases, Murayama branch, 4-7-1 Gakuen, Musashi-murayama, Tokyo 208-0011, Japan.
The covalently closed circular DNA (cccDNA) of hepatitis B virus (HBV) plays a key role in the persistence of viral infection. We have previously shown that overexpression of an antiviral factor APOBEC3G (A3G) induces hypermutation in duck HBV (DHBV) cccDNA, whereas uracil-DNA-glycosylase (UNG) reduces these mutations. In this study, using cell-culture systems, we examined whether endogenous A3s and UNG affect HBV cccDNA mutation frequency.
View Article and Find Full Text PDFIntervirology
October 2021
Department of Biochemistry and Molecular Biology, Guilin Medical University, Guilin, China.
Introduction: The association between hepatitis B virus (HBV) infection and the development of diabetes remains controversial. This study examined the effect of HBV infection on glucose homeostasis using a duck HBV (DHBV) model.
Methods: Plasma DHBV DNA was detected by quantitative polymerase chain reaction (PCR).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!