AI Article Synopsis

Article Abstract

Evidence is provided that the green leaf volatile 3-Z-hexenal serves as a precursor for biogenic secondary organic aerosol through the formation of polar organosulfates (OSs) with molecular weight (MW) 226. The MW 226 C6-OSs were chemically elucidated, along with structurally similar MW 212 C5-OSs, whose biogenic precursor is likely related to 3-Z-hexenal but still remains unknown. The MW 226 and 212 OSs have a substantial abundance in ambient fine aerosol from K-puszta, Hungary, which is comparable to that of the isoprene-related MW 216 OSs, known to be formed through sulfation of C5-epoxydiols, second-generation gas-phase photooxidation products of isoprene. Using detailed interpretation of negative-ion electrospray ionization mass spectral data, the MW 226 compounds are assigned to isomeric sulfate esters of 3,4-dihydroxyhex-5-enoic acid with the sulfate group located at the C-3 or C-4 position. Two MW 212 compounds present in ambient fine aerosol are attributed to isomeric sulfate esters of 2,3-dihydroxypent-4-enoic acid, of which two are sulfated at C-3 and one is sulfated at C-2. The formation of the MW 226 OSs is tentatively explained through photooxidation of 3-Z-hexenal in the gas phase, resulting in an alkoxy radical, followed by a rearrangement and subsequent sulfation of the epoxy group in the particle phase.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es503226bDOI Listing

Publication Analysis

Top Keywords

polar organosulfates
8
secondary organic
8
organic aerosol
8
green leaf
8
leaf volatile
8
volatile 3-z-hexenal
8
ambient fine
8
fine aerosol
8
isomeric sulfate
8
sulfate esters
8

Similar Publications

Organosulfates (OSs) derived from the oxidation of biogenic volatile organic compounds (BVOCs) in the presence of anthropogenic sulfate aerosols are the important tracers of secondary organic aerosols (SOAs). In order to better understand the concentration of pinene-nitrooxy organosulfates (pNOSs) in Nanjing, a sensitive high-performance liquid chromatography-electron spray ionization spectrum/mass spectrum (HPLC-ESI-MS/MS) to determine pNOSs in PM has been developed and validated in this study. Firstly, Hypersil Gold C (Thermo Scientific, San Jose, USA) was selected to separate pinene-derived nitrooxy organosulfates (pNOSs) based on their polarity.

View Article and Find Full Text PDF

A method using ion chromatography coupled to high-resolution Orbitrap mass spectrometry was developed to quantify highly-polar organic compounds in aqueous filter extracts of atmospheric particles. In total, 43 compounds, including short-chain carboxylic acids, terpene-derived acids, organosulfates, and inorganic anions were separated within 33 min by a KOH gradient. Ionization by electrospray was maximized by adding 100 µL min isopropanol as post-column solvent and optimizing the ion source settings.

View Article and Find Full Text PDF

Detection of organosulfates and nitrooxy-organosulfates in Arctic and Antarctic atmospheric aerosols, using ultra-high resolution FT-ICR mass spectrometry.

Sci Total Environ

May 2021

Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences & Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China. Electronic address:

Organosulfates (OSs) are recognized as important secondary organic aerosols (SOAs) in recent years. Due to their amphipathy and light absorptive capacity, OSs may potentially impact climate. Moreover, OSs can serve as molecular tracers for precursors and multiple processes leading to the generation of SOA.

View Article and Find Full Text PDF

Organosulfates and sulfamates are important classes of bioactive molecules but due to their polar nature, they are both difficult to prepare and purify. We report an operationally simple, double ion-exchange method to access organosulfates and sulfamates. Inspired by the novel sulfating reagent, TriButylSulfoAmmonium Betaine (TBSAB), we developed a 3-step procedure using tributylamine as the novel solubilising partner coupled to commercially available sulfating agents.

View Article and Find Full Text PDF

Reversed-phase liquid chromatography (RPLC) used for water analysis is not ideal for the analysis of highly polar and ionic contaminants because of low retention. Capillary electrophoresis (CE), on the other hand, is perfectly suited for the separation of ionic compounds but rarely applied in environmental analysis due to the weak concentration sensitivity when coupled to mass spectrometry (MS). However, novel interface designs and MS technology strongly improve the sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!