The availability of techniques to create desired genetic mutations has enabled the laboratory mouse as an extensively used model organism in biomedical research including human genetics. A new addition to this existing technical repertoire is the CRISPR/Cas system. Specifically, this system allows editing of the mouse genome much more quickly than the previously used techniques, and, more importantly, multiple mutations can be created in a single experiment. Here we provide protocols for preparation of CRISPR/Cas reagents and microinjection into one-cell mouse embryos to create knockout or knock-in mouse models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519007 | PMC |
http://dx.doi.org/10.1002/0471142905.hg1507s83 | DOI Listing |
Background: Although investment in biomedical and pharmaceutical research has increased significantly over the past two decades, there are no oral disease-modifying treatments for Alzheimer's disease (AD).
Method: We performed comprehensive human genetic and multi-omics data analyses to test likely causal relationship between EPHX2 (encoding soluble epoxide hydrolase [sEH]) and risk of AD. Next, we tested the effect of the oral administration of EC5026 (a first-in-class, picomolar sEH inhibitor) in a transgenic mouse model of AD-5xFAD and mechanistic pathways of EC5026 in patient induced Pluripotent Stem Cells (iPSC) derived neurons.
Int J Med Sci
January 2025
Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
Doublecortin-like kinase 1 (DCLK1) has been revealed to be involved in modulating cancer stemness and tumor progression, but its role in prostate cancer (PCa) remains obscure. Castration-resistant and metastatic PCa exhibit aggressive behaviors, and current therapeutic approaches have shown limited beneficial effects on the overall survival rate of patients with advanced PCa. This study aimed to investigate the biological role and potential molecular mechanism of DCLK1 in the progression of PCa.
View Article and Find Full Text PDFNature
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
The abundance and sequence of satellite DNA at and around centromeres is evolving rapidly despite the highly conserved and essential process through which the centromere directs chromosome inheritance. The impact of such rapid evolution is unclear. Here we find that sequence-dependent DNA shape dictates packaging of pericentromeric satellites in female meiosis through a conserved DNA-shape-recognizing chromatin architectural protein, high mobility group AT-hook 1 (HMGA1).
View Article and Find Full Text PDFNature
January 2025
Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
Sequencing-based genetic tests have uncovered a vast array of BRCA2 sequence variants. Owing to limited clinical, familial and epidemiological data, thousands of variants are considered to be variants of uncertain significance (VUS). Here we have utilized CRISPR-Cas9-based saturation genome editing in a humanized mouse embryonic stem cell line to determine the functional effect of VUS.
View Article and Find Full Text PDFNPJ Aging
January 2025
Department of Molecular Genetics, Kumamoto University, Kumamoto, Japan.
Age-related declines in cardiac function and exercise tolerance interfere with healthy living and decrease healthy life expectancy in older individuals. Tamogi-take mushrooms (Pleurotus cornucopiae) are known to contain high levels of Ergothioneine (EGT), an antioxidant with potential health benefits. In this study, we assessed the possibility that long-term consumption of Tamogi-take mushrooms might attenuate age-related decline in cardiac and vascular endothelial function in mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!