Chemical syntheses of homogenous solid solution alloy nanoparticles of noble metals require high temperature above 100 °C. Beside this, aqueous co-reduction methods lead to phase separation. In contrast, pulsed laser ablation in liquid (PLAL) allows synthesis of alloy nanoparticles with totally homogeneous ultrastructure in aqueous media at room temperature without reducing agents or organic ligands. However, to date, the dominant alloy formation process during PLAL is not fully understood. Based on the model of Ag-Au alloy, we elucidate that the underlying mechanism is not affected by post-irradiation or interactions with colloidal particles in solution but is caused directly by ablation. In this context we analyzed nanoparticles generated from alloy targets with 9 different compositions as well as pure Ag and Au references using UV-Vis spectroscopy, TEM and TEM-EDX line scans. The obtained results highlight that the total composition but not the microstructure of the applied target is the dominant parameter ruling elemental composition in the resulting solid solution alloy nanoparticles. Based on these findings, the application of pressed targets of metal powder mixtures in a continuous laser process with residence time <60 s allows economical fabrication of alloy nanoparticles ideally suited for applications in catalysis or biomedicine.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp03316gDOI Listing

Publication Analysis

Top Keywords

alloy nanoparticles
12
alloy
8
pulsed laser
8
laser ablation
8
solid solution
8
solution alloy
8
monophasic ligand-free
4
ligand-free alloy
4
alloy nanoparticle
4
nanoparticle synthesis
4

Similar Publications

The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.

View Article and Find Full Text PDF

Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.

View Article and Find Full Text PDF

Modification of Ti13Nb13Zr Alloy Surface via Plasma Electrolytic Oxidation and Silver Nanoparticles Decorating.

Materials (Basel)

January 2025

Department of Inorganic Chemistry, Analytical Chemistry, and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland.

The dynamically developing field of implantology requires researchers to search for new materials and solutions. In this study, TiNbZr samples were investigated as an alternative for popular, but potentially hazardous TiAl6V4. Samples were etched, sandblasted, subjected to PEO, and covered in AgNP suspension.

View Article and Find Full Text PDF

Macrophage-Mediated Liquid Metal Nanoparticles for Enhanced Tumor Accumulation and Inhibition.

ACS Biomater Sci Eng

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.

In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.

View Article and Find Full Text PDF

N-type BiTeSe(BTS) is a state-of-the-art thermoelectric material owing to its excellent thermoelectric properties near room temperatures for commercial applications. However, its performance is restricted by its comparatively low figure of merit ZT. Here, it is shown that a 14% increase in power factor (PF) (at 300 K) can be reached through incorporation of inorganic GaAs nanoparticles due to enhanced thermopower originating from the energy-dependent carrier scattering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!