Myxococcus xanthus is a Gram-negative deltaproteobacterium that has evolved the ability to differentiate into metabolically quiescent spores that are resistant to heat and desiccation. An essential feature of the differentiation processes is the assembly of a rigid, cell wall-like spore coat on the surface of the outer membrane. In this study, we characterize the spore coat composition and describe the machinery necessary for secretion of spore coat material and its subsequent assembly into a stress-bearing matrix. Chemical analyses of isolated spore coat material indicate that the spore coat consists primarily of short 1-4- and 1-3-linked GalNAc polymers that lack significant glycosidic branching and may be connected by glycine peptides. We show that 1-4-linked glucose (Glc) is likely a minor component of the spore coat with the majority of the Glc arising from contamination with extracellular polysaccharides, O-antigen, or storage compounds. Neither of these structures is required for the formation of resistant spores. Our analyses indicate the GalNAc/Glc polymer and glycine are exported by the ExoA-I system, a Wzy-like polysaccharide synthesis and export machinery. Arrangement of the capsular-like polysaccharides into a rigid spore coat requires the NfsA-H proteins, members of which reside in either the cytoplasmic membrane (NfsD, -E, and -G) or outer membrane (NfsA, -B, and -C). The Nfs proteins function together to modulate the chain length of the surface polysaccharides, which is apparently necessary for their assembly into a stress-bearing matrix.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4231708 | PMC |
http://dx.doi.org/10.1074/jbc.M114.595504 | DOI Listing |
J Bacteriol
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Key Laboratory of Fruit and Vegetable Processing of Ministry of Agriculture and Rural Affairs, Beijing Key Laboratory for Food Non-Thermal Processing, China Agricultural University, Beijing, China.
Bacterial spores can remain dormant for years, but they maintain the ability to recommence life through a process termed germination. Although spore germination has been reviewed many times, recent work has provided novel conceptual and molecular understandings of this important process. By using as a model organism, here we thoroughly describe the signal transduction pathway and events that lead to spore germination, incorporating the latest findings on transcription and translation that are likely detected during germination.
View Article and Find Full Text PDFspores are essential for initiation, recurrence and transmission of the disease. The spore surface layers are composed of an outermost exosporium layer that surrounds another proteinaceous layer, the spore coat. These spore surfaces layers are responsible for initial interactions with the host and spore resistance properties contributing to transmission and recurrence of CDI.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
The WRINKLED1 (WRI1) transcription factor controls carbon flow in plants through regulating the expression of glycolysis and fatty acid biosynthesis genes. The role of Gossypium hirsutum WRINKLED1 (GhWRI1) in seed-oil accumulation still needs to be explored. Multiple sequence alignment of WRI1 proteins confirmed the presence of two conserved AP2 domains.
View Article and Find Full Text PDFWater Res
December 2024
School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fedérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland; Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag), CH-8600 Dübendorf, Switzerland. Electronic address:
Bacterial spores pose significant risks to human health, yet the inactivation of spores is challenging due to their unique structures and chemical compositions. This study investigated the synergistic effect between surfactants and chlorine on the inactivation kinetics of Bacillus subtilis spores. Two surfactants, cocamidopropyl betaine (CAPB) and cetyltrimethylammonium chloride (CTMA) were selected to investigate chlorine disinfection in absence and presence of surfactants.
View Article and Find Full Text PDFJ Control Release
December 2024
Development of pharmaceutics, China Pharmaceutical University, Nangjing 210009, China. Electronic address:
Due to the two major physiological barriers restricted by mucus penetration and epithelia transport, oral insulin therapy using nano-delivery system remains challenging. Heyndrickxia coagulans spores can survive the harsh conditions of gastrointestinal tract (GIT), and penetrate in the mucus through germination to probiotics with their amphipathic proteinaceous coat shedding in the gut epithelium, which makes it possible to be functionalized with hydrophilic peptide/protein and form nanoparticles (NPs) in vivo. Inspired by the natural physiological properties of spores, novel deoxycholic acid-modified Heyndrickxia coagulans spores loaded with insulin (DA-Spore/Ins) as the generators of autonomous bio-based nanoparticles were designed to solve these absorption barriers to enhance oral insulin delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!