Cellobiohydrolases are exo-active glycosyl hydrolases that processively convert cellulose to soluble sugars, typically cellobiose. They effectively break down crystalline cellulose and make up a major component in industrial enzyme mixtures used for deconstruction of lignocellulosic biomass. Identification of the rate-limiting step for cellobiohydrolases remains controversial, and recent reports have alternately suggested either association (on-rate) or dissociation (off-rate) as the overall bottleneck. Obviously, this uncertainty hampers both fundamental mechanistic understanding and rational design of enzymes with improved industrial applicability. To elucidate the role of on- and off-rates, respectively, on the overall kinetics, we have expressed a variant in which a tryptophan residue (Trp-38) in the middle of the active tunnel has been replaced with an alanine. This mutation weakens complex formation, and the population of substrate-bound W38A was only about half of the wild type. Nevertheless, the maximal, steady-state rate was twice as high for the variant enzyme. It is argued that these opposite effects on binding and activity can be reconciled if the rate-limiting step is after the catalysis (i.e. in the dissociation process).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239601 | PMC |
http://dx.doi.org/10.1074/jbc.M114.604264 | DOI Listing |
Bioresour Technol
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan Center for Outstanding Overseas Scientists, Zhengzhou 450001, China. Electronic address:
Achieving the efficient biomass alcoholysis to methyl levulinate (ML) under high solid content conditions and establishing its kinetic model are crucial, but remain challenging. Here, the alcoholysis of microcrystalline cellulose (MC) and xylose residue (XR) to ML under high solid content conditions using CuSO as a catalyst was reported. High yield (34.
View Article and Find Full Text PDFStructure
January 2025
Małopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland. Electronic address:
Deoxyhypusination is the first rate-limiting step of the unique post-translational modification-hypusination-that is catalyzed by deoxyhypusine synthase (DHS) and deoxyhypusine hydroxylase (DOHH). This modification is essential for the activation of translation factor 5A in eukaryotes (eIF5A) and Archaea (aIF5A). This perspective focuses on the structural biology of deoxyhypusination complexes in eukaryotic and archaeal organisms.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, Delhi, 110016, India.
Crystalline γ-FeO(OH) dominantly possessing ─OH terminals (𝛾-FeO(OH)), polycrystalline γ-FeO(OH) containing multiple ─O, ─OH, and Fe terminals (𝛾-FeO(OH)), and α-FeO majorly containing ─O surface terminals are used as electrocatalysts to study the effect of surface terminals on electrocatalytic nitrate reduction reaction (eNORR) selectivity and stabilization of reaction intermediates. Brunauer-Emmett-Teller analysis and electrochemically determined surface area suggest a high active surface area of 117.79 m g (ECSA: 0.
View Article and Find Full Text PDFMetab Eng Commun
June 2025
Department of Chemical Engineering, University of Waterloo, Canada.
The growing plastics end-of-life crisis threatens ecosystems and human health globally. Microbial plastic degradation and upcycling have emerged as potential solutions to this complex challenge, but their industrial feasibility and limitations thereon have not been fully characterized. In this perspective paper, we review literature describing both plastic degradation and transformation of plastic monomers into value-added products by microbes.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2025
Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
The synthesis of n-3 and n-6 polyunsaturated acids (PUFAs) is associated with physiological functions in mammals, being catalyzed by Δ-5D and Δ-6D desaturases and elongases Elovl-2 and Elovl-5. In this context, we aimed to study the chief kinetic features of PUFA liver anabolism, looking upon (i) the time-dependency for the specific activity of Δ-6D, Δ-5D, Elovl2, Elovl2/5 and Elovl5, using n-3 and n-6 precursors between 0 and 240 min ex vivo in mouse liver.; and (ii) the specific activity-substrate (α-linolenic acid; ALA) concentration responses of Δ-6D in the absence and presence of linoleic acid (LA), arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), an enzyme regarded as the rate-limiting step in PUFA anabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!