Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 (IDO1) plays a key role in tumoral resistance to immune rejection. In humans, constitutive expression of IDO1 has been observed in several tumor types. However, a comprehensive analysis of its expression in normal and tumor tissues is still required to anticipate the risks and potential benefits of IDO1 inhibitors. Using a newly validated monoclonal antibody to human IDO1, we performed an extensive immunohistochemical analysis of IDO1 expression in normal and tumor tissues. In normal tissues, IDO1 was expressed by endothelial cells in the placenta and lung and by epithelial cells in the female genital tract. In lymphoid tissues, IDO1 was expressed in mature dendritic cells with a phenotype (CD83(+), DC-LAMP(+), langerin(-), CD123(-), CD163(-)) distinct from plasmacytoid dendritic cells. Importantly, IDO1-expressing dendritic cells were not enriched in tumor-draining lymph nodes, in contrast with previously reported findings. IDO1-expressing cells were observed in a large fraction (505/866, 58%) of human tumors. They comprised tumor cells, endothelial cells, and stromal cells in proportions that varied depending on the tumor type. Tumors showing the highest proportions of IDO1-immunolabeled samples were carcinomas of the endometrium and cervix, followed by kidney, lung, and colon. This hierarchy of IDO1 expression was confirmed by gene expression data mined from The Cancer Genome Atlas database. Expression of IDO1 may be used to select tumors likely to benefit from targeted therapy with IDO1 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1158/2326-6066.CIR-14-0137DOI Listing

Publication Analysis

Top Keywords

dendritic cells
12
ido1
10
cells
9
indoleamine 23-dioxygenase
8
expression ido1
8
expression normal
8
normal tumor
8
tumor tissues
8
ido1 inhibitors
8
ido1 expression
8

Similar Publications

Rheumatoid Arthritis (RA) is an autoimmune, chronic, systemic inflammatory disease that causes redness, swelling, stiffness, and joint pain. It is a long-lasting disease that can have a widespread impact on the body, often affecting the hands, feet, and wrists. The immune cells, such as dendritic cells, T cells, B cells, macrophages, and neutrophils, play a significant role in bone degradation and inflammation.

View Article and Find Full Text PDF

Despite the favorable effects of immunotherapies in multiple types of cancers, its complete success in CNS malignancies remains challenging. Recently, a successful clinical trial of cytokine-induced killer (CIK) cell immunotherapy in patients with glioblastoma (GBM) has opened a new avenue for adoptive cellular immunotherapies in CNS malignancies. Prompt from these findings, herein, we investigated whether dendritic cells (DC) in combination with cytokine-induced killer cells (DC-CIK) could also provide an alternative and more effective way to improve the efficacy of GBM treatment.

View Article and Find Full Text PDF

Bioactive microspheres to enhance sonodynamic-embolization-metalloimmune therapy for orthotopic liver cancer.

Biomaterials

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:

The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.

View Article and Find Full Text PDF

Non-tuberculous Mycobacteria (NTM) are found extensively in various environments, yet most are non-pathogenic. Only a limited number of these organisms can cause various infections, including those affecting the lungs, skin, and central nervous system, particularly when the host's autoimmune function is compromised. Among these, Non-tuberculous Mycobacteria Pulmonary Diseases (NTM-PD) are the most prevalent.

View Article and Find Full Text PDF

FcγRI plays a pro-inflammatory role in the immune response to Chlamydia respiratory infection by upregulating dendritic cell-related genes.

Int Immunopharmacol

January 2025

Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Immunology, Department of Immunology, School of Basic Medical Sciences, Tianjin Key Laboratory of Cellular and Molecular Immunology, Tianjin Medical University, Tianjin 300070, China. Electronic address:

Background: FcγRI, a pivotal cell surface receptor, is implicated in diverse immune responses and is ubiquitously expressed on numerous immune cells. However, its role in intracellular bacterial infections remains understudied.

Methods: Wild-type (WT) and FcγRI knockout (FcγRI-KO) mice were inoculated intranasally with a specific dose of C.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!