Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During recent years, biotechnology derived production of flavours and fragrances have expanded rapidly. The world's most popular flavour vanillin is no exception. This review outlines the current state of biotechnology-based vanillin synthesis with the use of ferulic acid, eugenol and glucose as substrates and bacteria, fungi and yeasts as microbial production hosts. The elucidated de novo biosynthetic pathway of vanillin in the vanilla orchid and the possible applied uses of this new knowledge in the biotechnology derived and pod-based vanillin industries are also highlighted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mp/ssu105 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!