Alternative methods to detect non-genotoxic carcinogens are urgently needed, as this class of carcinogens goes undetected in the current testing strategy for carcinogenicity under REACH. A complicating factor is that non-genotoxic carcinogens act through several distinctive modes of action, which makes prediction of their carcinogenic property difficult. We have recently demonstrated that gene expression profiling in primary mouse hepatocytes is a useful approach to categorize non-genotoxic carcinogens according to their modes of action. In the current study, we improved the methods used for analysis and added mouse embryonic stem cells as a second in vitro test system, because of their features complementary to hepatocytes. Our approach involved an unsupervised analysis based on the 30 most significantly up- and down-regulated genes per chemical. Mouse embryonic stem cells and primary mouse hepatocytes were exposed to a selected set of chemicals and subsequently subjected to gene expression profiling. We focused on non-genotoxic carcinogens, but also included genotoxic carcinogens and non-carcinogens to test the robustness of this approach. Application of the optimized comparison approach resulted in improved categorization of non-genotoxic carcinogens. Mouse embryonic stem cells were a useful addition, especially for genotoxic substances, but also for detection of non-genotoxic carcinogens that went undetected by primary hepatocytes. The approach presented here is an important step forward to categorize chemicals, especially those that are carcinogenic.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00204-014-1368-6DOI Listing

Publication Analysis

Top Keywords

non-genotoxic carcinogens
28
hepatocytes approach
12
mouse embryonic
12
embryonic stem
12
stem cells
12
carcinogens
9
approach categorize
8
categorize non-genotoxic
8
carcinogens undetected
8
modes action
8

Similar Publications

Background: Previously, Japanese Environmental Mutagen and Genome Society/Mammalian Mutagenicity Study Group/Toxicogenomics Study Group (JEMS/MMS toxicogenomic study group) proposed 12 genotoxic marker genes (Aen, Bax, Btg2, Ccnf, Ccng1, Cdkn1a, Gdf15, Lrp1, Mbd1, Phlda3, Plk2, and Tubb4b) to discriminate genotoxic hepatocarcinogens (GTHCs) from non-genotoxic hepatocarcinogens (NGTHCs) and non-genotoxic non-hepatocarcinogens (NGTNHCs) in mouse and rat liver using qPCR and RNA-Seq and confirmed in public rat toxicogenomics data, Open TG-GATEs, by principal component analysis (PCA). On the other hand, the U.S.

View Article and Find Full Text PDF

Genotoxic and antigenotoxic medicinal plant extracts and their main phytochemicals: "A review".

Front Pharmacol

November 2024

Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy.

Many medicinal plant extracts have been proven to have significant health benefits. In contrast, research has shown that some medicinal plant extracts can be toxic, genotoxic, mutagenic, or carcinogenic. Therefore, evaluation of the genotoxicity effects of plant extracts that are used as traditional medicine is essential to ensure they are safe for use and in the search for new medication.

View Article and Find Full Text PDF

The incidence of multiple-organ cancers has recently increased due to simultaneous exposure to various environmental carcinogens. Thunb. () is recognized for its many health benefits, including its anti-cancer properties.

View Article and Find Full Text PDF

Comprehensive analysis of adverse outcome pathway, potency, human exposure supports carcinogenicity of polyhexamethylene guanidine phosphate in lung cancer.

Ecotoxicol Environ Saf

November 2024

College of Pharmacy, Kyungsung University, Busan, South Korea; School of Pharmacy, Sungkyunkwan University, Suwon, South Korea. Electronic address:

In this study, we investigated the potential mechanisms by which polyhexamethylene guanidine phosphate (PHMG-p), a known respiratory irritant, may contribute to lung cancer development. Using the adverse outcome pathway (AOP) framework, we analyzed established databases (such as AOP-Wiki) and employed AI tools (AOP-helpFinder) to identify key events (KEs) associated with lung carcinogenesis. Our analysis indicates that chronic inhalation of PHMG-p triggers a non-genotoxic pathway, characterized by cell membrane disruption, inflammation, and oxidative stress, with a point of departure (POD) of 0.

View Article and Find Full Text PDF

Fumonisin B1 (FB1), which is produced by Fusarium species, is one of the most prevalent mycotoxins known to exert several toxic effects, particularly nephrotoxicity. While its genotoxic carcinogenic mechanisms have been extensively studied, its influence on non-genotoxic pathways including intercellular communication and microRNA (miRNA) regulation remain underexplored. The present study investigates the effects of FB1 on gap junctions, miRNA expression profiles, and their relationship in human kidney cells (HK-2 and HEK293).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!