Bacterial manganese superoxide dismutase (MnSOD) has been shown to localize to the chromosomal portion of the cell and impart protection from ionizing radiation to DNA. The binding affinity of bacterial MnSOD to non-sequence specific double stranded oligomeric DNA has been quantitated previously by nitrocellulose filter binding and gel shift assays. In the current study we have examined the equilibrium binding of Escherichia coli MnSOD to poly(U), poly(A), poly(C), poly(dU) and double-stranded (ds) DNA. Equilibrium association constant, Kobs, was measured by monitoring intrinsic tryptophan fluorescence quenching. Based on the extent of quenching, Kobs was determined as a function of monovalent salt (MX) concentration and type, as well as temperature, from which ΔG°obs and ΔH°obs were determined. It was found that the polynucleotides bind to MnSOD in the following affinity hierarchy, poly(dU)>poly(U)>dsDNA>poly(A)>poly(C). The differences in the hierarchy were not large in magnitude as the poly(dU) bound with less than a 100-fold higher affinity than poly(C) at any given [MX]. For each polynucleotide, Kobs decreases only slightly with increasing [K(+)], surprising for a relatively non-specific nucleic acid protein. Thus, our finding that MnSOD can bind to RNA leads to the possibility that MnSOD may confer protection to RNA, as well. This is, as of yet, untested. Typically one would expect strong electrostatic interactions to dominate a non-specific binding event like that, but our results show an unexpectedly strong non-electrostatic contribution to the binding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbapap.2014.09.022 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry and Biochemistry, Auburn University, Auburn, AL 36849, USA.
Although nickel is found in the active sites of a class of superoxide dismutase (SOD), nickel complexes with non-peptidic ligands normally do not catalyze superoxide degradation, and none has displayed activity comparable to those of the best manganese-containing SOD mimics. Here, we find that nickel complexes with polydentate quinol-containing ligands can exhibit catalytic activity comparable to those of the most efficient manganese-containing SOD mimics. The nickel complexes retain a significant portion of their activity in phosphate buffer and under operando conditions and rely on ligand-centered redox processes for catalysis.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Fujian Province Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Science, Fujian Normal University, Fuzhou, 350007, Fujian Province, China. Electronic address:
Since the widespread use of antibiotics, the residues of antibiotics have frequently been detected in various water sources, making antibiotic pollution an urgent environmental issue. In this paper, one-step green synthetic reduced graphene/manganese nanoparticles (rGO/Mn NPs) composites have been utilized as a novel environmentally-friendly catalyst for tetracycline (TC) removal. The results demonstrated that rGO/Mn NPs exhibit excellent adsorption performance for TC, and can efficiently activate sodium persulfate (PDS) to oxidize and degrade TC.
View Article and Find Full Text PDFMater Today Bio
February 2025
Research Center of Nanomedicine Technology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530000, PR China.
Nanozymes with specific catalytic activity inhibit inflammation and promote wound healing efficiently and safely. In this work, multifunctional manganese-based nanozymes (MnGA) with antioxidant properties were successfully constructed via a simple coordination reaction in which manganese chloride was used as the manganese source and gallic acid (GA) was used as the ligand solution. MnGA possesses both catalase-like (CAT-like) and superoxide dismutase-like (SOD-like) activities and a reactive nitrogen species (RNS) scavenging capacity, which enables it to efficiently inhibit the inflammatory response.
View Article and Find Full Text PDFFree Radic Biol Med
January 2025
Department of Radiation Oncology, Mays Cancer Center at UT Health San Antonio MD Anderson, Joe R. and Teresa Lozano Long School of Medicine, TX, USA. Electronic address:
Manganese superoxide dismutase (MnSOD/SOD2) is an essential mitochondrial enzyme that detoxifies superoxide radicals generated during oxidative respiration. MnSOD/SOD2 lysine 68 acetylation (K68-Ac) is an important post-translational modification (PTM) that regulates enzymatic activity, responding to nutrient status or oxidative stress, and elevated levels have been associated with human illness. To determine the in vivo role of MnSOD-K68 in the heart, we used a whole-body non-acetylation mimic mutant (MnSOD) knock-in mouse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!