Periosteum: characteristic imaging findings with emphasis on radiologic-pathologic comparisons.

Skeletal Radiol

Service de Radiologie Ostéo-Articulaire, Hôpital Lariboisière, AP-HP, 2 Rue Ambroise-Paré, 75010, Paris, France,

Published: March 2015

The periosteum covers most bone structures. It has an outer fibrous layer and an inner cambial layer that exhibits osteogenic activity. The periosteum is a dynamic structure that plays a major role in bone modeling and remodeling under normal conditions. In several disorders such as infections, benign and malignant tumors, and systemic diseases, the osteogenic potential of the periosteum is stimulated and new bone is produced. The newly formed bone added onto the surface of the cortex adopts various configurations depending on the modalities and pace of bone production. Our aim here is to describe the anatomy, histology, and physiology of the periosteum and to review the various patterns of periosteal reaction with emphasis on relations between radiological and histopathological findings. A careful evaluation of the periosteal reaction and appearance of the underlying cortex, in combination with the MRI, clinical, and laboratory data, provides valuable information on lesion duration and aggressiveness, thereby assisting in the etiological diagnosis and optimizing patient management. A solid reaction strongly suggests a benign and slow-growing process that gives the bone enough time to wall off the lesion. Single lamellar reactions occur in acute and usually benign diseases. Multilamellar reactions are associated with intermediate aggressiveness and a growth rate close to the limit of the walling-off capabilities of the bone. Spiculated, interrupted, and complex combined reactions carry the worst prognosis, as they occur in the most aggressive and fast-growing diseases: the periosteum attempts to create new bone but is overwhelmed and may be breached.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00256-014-1976-5DOI Listing

Publication Analysis

Top Keywords

bone
8
periosteal reaction
8
periosteum
6
periosteum characteristic
4
characteristic imaging
4
imaging findings
4
findings emphasis
4
emphasis radiologic-pathologic
4
radiologic-pathologic comparisons
4
comparisons periosteum
4

Similar Publications

A collagen-inspired helical protein-mimic has been synthesized via topochemical polymerization of a designed tripeptide monomer. In the monomer crystal, molecules arrange in a head-to-tail manner, forming supramolecular helices. The azide and alkyne of adjacent molecules in the supramolecular helix are proximally preorganized in a ready-to-react arrangement.

View Article and Find Full Text PDF

Measuring lower extremity impact acceleration is a common strategy to identify runners with increased injury risk. However, existing axial peak tibial acceleration (PTA) thresholds for determining high-impact runners typically rely on small samples or fixed running speeds. This study aimed to describe the distribution of axial PTA among runners at their preferred running speed, determine an appropriate adjustment for investigating impact magnitude at different speeds, and compare biomechanics between runners classified by impact magnitude.

View Article and Find Full Text PDF

Low-dose methotrexate in Rheumatology: A reinvented drug.

J R Coll Physicians Edinb

January 2025

Department of Rheumatology, Centre for Rheumatology, Calicut, Kerala, India.

Low-dose methotrexate (LD-MTX) is the anchor drug used in the treatment of various rheumatological illnesses. There are a lot of misconceptions associated with the long-term use of MTX in the minds of practitioners. The origin of most of these myths stems from the ill effects associated with high-dose MTX used in cancer chemotherapy.

View Article and Find Full Text PDF

Functional Hydrogel Interfaces for Cartilage and Bone Regeneration.

Adv Healthc Mater

January 2025

School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.

Effective treatment of bone diseases is quite tricky due to the unique nature of bone tissue and the complexity of the bone repair process. In combination with biological materials, cells and biological factors can provide a highly effective and safe treatment strategy for bone repair and regeneration, especially based on these multifunctional hydrogel interface materials. However, itis still a challenge to formulate hydrogel materials with fascinating properties (e.

View Article and Find Full Text PDF

Self-Cascade of ROS/Glucose-Scavenging Immunomodulatory Hydrogels for Programmed Therapeutics of Infected Diabetic Ulcers via Nrf2/NF-κB Pathway.

Small

January 2025

Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, and Guangdong-Hong Kong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.

Diabetic ulcers (DUs) are characterized by a microenvironment with high oxidative stress, high blood glucose levels, and recalcitrant bacterial infections. This microenvironment is accompanied by long-term suppression of endogenous antioxidant systems, which makes their clinical management extremely challenging. To address this issue, a hybridized novel gold-palladium (AuPd) nanoshell of the injectable/injectable hydrogel system UiO/AuPd/BNN6/PEG@Gel (UAPsBP@Gel) is developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!