Quantitative polymerase chain reaction (qPCR) is widely used in quantitation of plasma DNA for non‑invasive prenatal diagnosis (NIPD). Control genes are indispensable as standard normalizers in qPCR analysis, and there is increasing evidence indicating that the content levels of commonly used control genes vary significantly in different independent experiments. The commonly used control genes for DNA quantitation using qPCR in plasma DNA analysis are frequently chosen without any preliminary evaluation of their suitability. The present study aimed to examine a panel of six common control genes (HBB, TERT, GAPDH, ALB, ACTB and TRG) in order to evaluate and validate the most reliable control genes for qPCR studies in the quantitation of plasma DNA from pregnant and non‑pregnant females for NIPD. Plasma DNA was extracted from the peripheral blood of 18 pregnant females and 18 non‑pregnant females by the QIAamp DNA mini kit. qPCR followed by geNorm, NormFinder and BestKeeper based analysis was conducted to evaluate the DNA content stabilities of the six candidate control genes. DSCR3 was used to validate the result. The study recommended TERT and the combination of ACTB and TERT as the optimal control genes for qPCR studies on pregnant/non‑pregnant plasma DNA quantitation. Thus, the study reveals that the DNA content stability of widely used control genes varies significantly in pregnant and non‑pregnant plasma DNA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijmm.2014.1944 | DOI Listing |
Sci Rep
December 2024
Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
Entomopathogenic nematodes (EPNs) associated with their symbiotic bacteria can effectively kill insect pests, in agriculture, forestry and floriculture. Industrial-scale production techniques for EPNs have been established, including solid and liquid monoculture systems. It is found that supplement of 0.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
Fruit ripening is a highly-orchestrated process that requires the fine-tuning and precise control of gene expression, which is mainly governed by phytohormones, epigenetic modifiers, and transcription factors. How these intrinsic regulators coordinately modulate the ripening remains elusive. Here we report the identification and characterization of FvALKBH10B as an N-methyladenosine (mA) RNA demethylase necessary for the normal ripening of strawberry (Fragaria vesca) fruit.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Genetics, Yale University, Yale School of Medicine, New Haven, 06510, CT, USA.
The cis-regulatory elements encoded in an mRNA determine its stability and translational output. While there has been a considerable effort to understand the factors driving mRNA stability, the regulatory frameworks governing translational control remain more elusive. We have developed a novel massively parallel reporter assay (MPRA) to measure mRNA translation, named Nascent Peptide Translating Ribosome Affinity Purification (NaP-TRAP).
View Article and Find Full Text PDFNat Commun
December 2024
Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
Modern maize (Zea mays ssp. mays) was domesticated from Teosinte parviglumis (Zea mays ssp. parviglumis), with subsequent introgressions from Teosinte mexicana (Zea mays ssp.
View Article and Find Full Text PDFNat Commun
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
The anthroponotic Cryptosporidium hominis differs from the zoonotic C. parvum in its lack of infectivity to animals, but several divergent subtypes have recently been found in nonhuman primates and equines. Here, we sequence 17 animal C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!