The gene (1350-bp) encoding a modular β-1,4-xylanase (XylU), which consists of an N-terminal catalytic GH10 domain and a C-terminal carbohydrate-binding module 2 (CBM 2), from Streptomyces mexicanus HY-14 was cloned and functionally characterized. The purified His-tagged recombinant enzyme (rXylU, 44.0 kDa) was capable of efficiently hydrolyze diverse xylosidic compounds, p-nitrophenyl-cellobioside, and p-nitrophenyl-xylopyranoside when incubated at pH 5.5 and 65°C. Especially, the specific activities (649.8 U/mg and 587.0 U/mg, respectively) of rXylU toward oat spelts xylan and beechwood xylan were relatively higher than those (<500.0 U/mg) of many other GH10 homologs toward the same substrates. The results of enzymatic degradation of birchwood xylan and xylooligosaccharides (xylotriose to xylohexaose) revealed that rXylU preferentially hydrolyzed the substrates to xylobiose (>75%) as the primary degradation product. Moreover, a small amount (4%<) of xylose was detected as the degradation product of the evaluated xylosidic substrates, indicating that rXylU was a peculiar GH10 β-1,4-xylanase with substrate specificity, which was different from its retaining homologs. A significant reduction of the binding ability of rXylU caused by deletion of the C-terminal CBM 2 to various insoluble substrates strongly suggested that the additional domain might considerably contribute to the enzyme-substrate interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12275-014-4390-8DOI Listing

Publication Analysis

Top Keywords

streptomyces mexicanus
8
mexicanus hy-14
8
biocatalytic properties
4
properties substrate-binding
4
substrate-binding ability
4
ability modular
4
modular gh10
4
gh10 β-14-xylanase
4
β-14-xylanase insect-symbiotic
4
insect-symbiotic bacterium
4

Similar Publications

In 2003, was reported as a novel xylanolytic bacterial species isolated from soil; a partial genome sequence was determined. In 2019, a strain from the same species was isolated from a hand skin swab sample from a healthy French woman. Genome sequencing revealed an 8,011,832-bp sequence with a GC content of 72.

View Article and Find Full Text PDF

The gene (1350-bp) encoding a modular β-1,4-xylanase (XylU), which consists of an N-terminal catalytic GH10 domain and a C-terminal carbohydrate-binding module 2 (CBM 2), from Streptomyces mexicanus HY-14 was cloned and functionally characterized. The purified His-tagged recombinant enzyme (rXylU, 44.0 kDa) was capable of efficiently hydrolyze diverse xylosidic compounds, p-nitrophenyl-cellobioside, and p-nitrophenyl-xylopyranoside when incubated at pH 5.

View Article and Find Full Text PDF

Streptomyces pluripotens sp. nov., a bacteriocin-producing streptomycete that inhibits meticillin-resistant Staphylococcus aureus.

Int J Syst Evol Microbiol

September 2014

Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia.

Two novel actinobacteria, strains MUSC 135(T) and MUSC 137, were isolated from mangrove soil at Tanjung Lumpur, Malaysia. The 16S rRNA gene sequence similarity and DNA-DNA relatedness between strains MUSC 135(T) and MUSC 137 were 100 % and 83±3.2 %, confirming that these two strains should be classified in the same species.

View Article and Find Full Text PDF

Streptomyces mexicanus sp. nov., a xylanolytic micro-organism isolated from soil.

Int J Syst Evol Microbiol

January 2003

Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, AP 70228, UNAM, 04510, México DF, Mexico.

The taxonomic position of a thermophilic actinomycete strain isolated from soil was examined using a polyphasic approach. The strain, designated CH-M-1035T, was assigned to the genus Streptomyces on the basis of chemical and morphological criteria. It formed Rectiflexibiles aerial hyphae that carried long chains of rounded, smooth spores.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!