Resveratrol, a natural polyphenolic phytochemical, has received considerable attention due to its potential chemopreventive and chemotherapeutic properties. In the present study, we first evaluated the growth-inhibitory effect of resveratrol on HepG2 cells and explored the underlying molecular mechanisms. Resveratrol inhibited proliferation and induced apoptosis in HepG2 cells via activation of caspase-9 and caspase-3, upregulation of the Bax/Bcl-2 ratio and induction of p53 expression. Cell cycle analysis demonstrated that resveratrol arrested cell cycle progression in the G1 and S phase. We further focused on the combination of matrine, a natural component extracted from the traditional Chinese medical herb Sophora flavescens Ait., as a mechanism to potentiate the growth-inhibitory effect of resveratrol on HepG2 cells. Both MTT and colony formation assay results indicated that the combined treatment of resveratrol and matrine exhibited a synergistic antiproliferative effect. In addition, resveratrol-induced apoptosis was significantly enhanced by matrine, which could be attributed to activation of caspase-3 and caspase-9, downregulation of survivin, induction of reactive oxygen species (ROS) generation and disruption of mitochondria membrane potential (Δψm). Our findings suggest that the combination treatment of resveratrol and matrine is a promising novel anticancer strategy for liver cancer; it also provides new insights into the mechanisms of combined therapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/or.2014.3512 | DOI Listing |
Cell Biol Toxicol
January 2025
Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.
Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFRSC Med Chem
January 2025
Área de Neurofisiología celular, Instituto de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia Medellín Colombia
In this work, we developed potential multifunctional agents to combat Alzheimer's disease. According to our strategy, fragments of tacrine and donepezil were merged in a unique hybrid structure. After successfully synthesizing the compounds, they were evaluated for their dual AChE/BuChE inhibitor potential and neuroprotector response using a glutamate-induced excitotoxicity model.
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia.
Background: Hepatocellular carcinoma (HCC) is a health problem due to multi-drug resistance (MDR). Codelivery of multiple oncotherapy in one cargo as chimeric cancer therapy (CCT) is suggested as a solution for MDR. This study aims to engineer chitosan-coated nanostructure lipid carriers (NLCs) loaded with gefitinib (GF) and simvastatin (SV) as CCT for HCC.
View Article and Find Full Text PDFBiol Pharm Bull
January 2025
Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8505, Japan.
A 3-dimensional (3D) cell culture is now being actively pursued to accomplish the in vivo-like cellular morphology and biological functions in cell culture. We recently obtained nano-fibrillated bacterial cellulose (NFBC). In this study, we developed a novel NFBC-based 3D cell-culture system, the OnGel method, and the Suspension method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!