The present paper selects the Kuqa Oasis as the study area, studies spectrum characteristics of soil salinity, and establishes soil spectrum library. Through transforming and analyzing varying degrees of soil salinization reflectance spectra data in the typical study area, and selecting the most sensitive spectral bands in response to salinization, we established the measured hyperspectral soil salinity monitoring model, and by correcting the soil salinity monitoring model established by HIS image through scale effect conversion improved the model accuracy under the conditions of a regional-scale monitoring of soil salinization. The results show that both measured hyperspectral soil salinity monitoring model and HSI image soil salinity inversion model have good accuracy, model determination coefficient (R2) is higher than 0.57 and the model stability is better. Compared with the corrected HSI image soil salinity inversion model and uncorrected HSI image soil salinity inversion model, the coefficient of determination has been greatly improved, which increased from 0.571 to 0.681, and through the 0.01 significance level, the root mean square error (RMSE) value is 0.277. The correction HIS image soil salinization monitoring model can better improve the model accuracy under the condition of regional scale soil salinization monitoring, and using this method to carry out the soil salinization quantitative remote sensing monitoring is feasible, and also can provide scientific reference for future research.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil salinity
28
soil salinization
24
monitoring model
16
image soil
16
soil
13
salinization monitoring
12
measured hyperspectral
12
salinity monitoring
12
hsi image
12
salinity inversion
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!