Methane in a simulated biogas converting to methanol under aerobic condition was comparatively assessed by inhibiting the activity of methanol dehydrogenase (MDH) of Methylosinus sporium using phosphate, NaCl, NH4Cl or EDTA in their varying concentrations. The highest amount of methane was indistinguishably diverted at the typical conditions regardless of the types of inhibitors: 35°C and pH 7 under a 0.4% (v/v) of biogas, specifically for <40 mM phosphate, 50 mM NaCl, 40 mM NH4Cl or 150 µM EDTA. The highest level of methanol was obtained for the addition of 40 mM phosphate, 100 mM NaCl, 40 mM NH4Cl or 50 µM EDTA. In other words, 0.71, 0.60, 0.66 and 0.66 mmol methanol was correspondingly generated by the oxidation of 1.3, 0.67, 0.74 and 1.3 mmol methane. It gave a methanol conversion rate of 54.7%, 89.9%, 89.6% and 47.8%, respectively. Among them, the maximum rate of methanol production was observed at 6.25 µmol/mg h for 100 mM NaCl. Regardless of types or concentrations of inhibitors differently used, methanol production could be nonetheless identically maximized when the MDH activity was limitedly hampered by up to 35%.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2014.971059 | DOI Listing |
Appl Environ Microbiol
September 2023
Department of Chemistry, Jeonbuk National University, Jeonju, South Korea.
Methane is a major greenhouse gas, and methanotrophs regulate the methane level in the carbon cycle. Soluble methane monooxygenase (sMMO) is expressed in various methanotroph genera, including and , and catalyzes the hydroxylation of methane to methanol. It has been proposed that MmoR regulates the expression of sMMO as an enhancer-binding protein under copper-limited conditions; however, details on this transcriptional regulation remain limited.
View Article and Find Full Text PDFFront Microbiol
April 2022
Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands.
Methane, a potent greenhouse gas produced in freshwater ecosystems, can be used by methane-oxidizing bacteria (MOB) and can therefore subsidize the pelagic food web with energy and carbon. Consortia of MOB and photoautotrophs have been described in aquatic ecosystems and MOB can benefit from photoautotrophs which produce oxygen, thereby enhancing CH oxidation. Methane oxidation can account for accumulation of inorganic carbon (i.
View Article and Find Full Text PDFJ Microbiol Biotechnol
March 2022
Department of Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.
The hydroxylation of methane (CH) is crucial to the field of environmental microbiology, owing to the heat capacity of methane, which is much higher than that of carbon dioxide (CO). Soluble methane monooxygenase (sMMO), a member of the bacterial multicomponent monooxygenase (BMM) superfamily, is essential for the hydroxylation of specific substrates, including hydroxylase (MMOH), regulatory component (MMOB), and reductase (MMOR). The diiron active site positioned in the MMOH α-subunit is reduced through the interaction of MMOR in the catalytic cycle.
View Article and Find Full Text PDFDalton Trans
November 2021
Department of Chemistry and Institute of Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54796, Republic of Korea.
By facilitating electron transfer to the hydroxylase diiron center, MMOR-a reductase-serves as an essential component of the catalytic cycle of soluble methane monooxygenase. Here, the X-ray structure analysis of the FAD-binding domain of MMOR identified crucial residues and its influence on the catalytic cycle.
View Article and Find Full Text PDFSci Adv
October 2019
Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
Soluble methane monooxygenase in methanotrophs converts methane to methanol under ambient conditions. The maximum catalytic activity of hydroxylase (MMOH) is achieved through the interplay of its regulatory protein (MMOB) and reductase. An additional auxiliary protein, MMOD, functions as an inhibitor of MMOH; however, its inhibitory mechanism remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!