Background: Toxoplasmosis is a major public health concern in many countries of the world. A cross-sectional and follow up experimental study designs were used for seroepidemiological and bioassay studies, respectively from November 2012 to April 2013. The objectives were to estimate the seroprevalence of T. gondii infection, to assess risk factors and to isolate the parasite from camels in the Fentale district, Ethiopia. A direct agglutination test (DAT) and indirect enzyme linked immunosorbent assay (ELISA) kits were used to test camel sera. Hearts and tongues (each 25 g) from 31 seropositive camels were bioassayed in mice. Associations between seroprevalence and potential risk factors (collected using a questionnaire survey) were analyzed using logistic regression.
Results: An overall T. gondii prevalence of 49.62% (220/455) by DAT and 40.49% (179/451) by indirect ELISA test were detected. Herd level seroprevalence of 96.77% (30/31) (95% CI: 83.30- 99.92) by DAT was recorded and it was significantly higher in areas where wild felids are present (P = 0.038). Multivariable logistic regression showed that the likelihood of acquiring T. gondii infection was significantly higher in camels in the Ilala pastoral association [PA] (82.26%) (Adjusted Odds ratio [aOR] = 10.8; P < 0.001) than camels in the Galcha PA (31.43%), in camels of ≥ 8 years old (56.52%; aOR = 1.88; P = 0,033) than camels of ≤ 4 years old (34.26%) and in areas where domestic cats are present (aOR = 4.16; P = 0.006). All camel owners were uneducated, handle aborted fetus with bare hands, and drink raw camel milk. DAT and ELISA tests had moderate agreement (Kappa = 0.41). Viable T. gondii were isolated from 16.13% (5/31) of DAT positive camels. One DAT positive but ELISA negative camel sample gave a cyst positive result.
Conclusions: T. gondii infection of camels in the study district is widespread. Age, presence of domestic cats and study PA are independent predictors of T. gondii seropositivity. Isolation of viable parasites from edible tissues of camels and the very poor knowledge of pastoralists about toxoplasmosis suggest the need for prevention of toxoplasmosis through bio-security measures, education and further investigation to unravel the impact of camel toxoplasmosis deserves consideration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4189602 | PMC |
http://dx.doi.org/10.1186/s12917-014-0222-7 | DOI Listing |
Int J Mol Sci
December 2024
Neurofarba Department, Section of Pharmaceutical Sciences, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
, the causative agent of toxoplasmosis, is a protozoan parasite capable of infecting a wide range of hosts, posing significant health risks, particularly to immunocompromised individuals and congenital transmission. Current therapeutic options primarily target the active tachyzoite stage but are limited by issues such as toxicity and incomplete efficacy. As a result, there is an urgent need for alternative therapies that can selectively target parasite-specific mechanisms critical for metabolic processes and host-parasite interactions.
View Article and Find Full Text PDFVet Res Commun
January 2025
Laboratório de Protozoologia, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, RJ, Brasil.
Goats are the one of the most susceptible domestic species to toxoplasmosis affecting animal health and production. The present study aimed to determine the seroprevalence of T. gondii infection in dairy goats from Rio de Janeiro, Brazil, as well as to evaluate associated risk factors, parasitic DNA detection in raw goat milk samples, and attempts to isolate the parasite from raw goat milk samples.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, 92697, USA.
Background: Immunothrombosis is the process by which the coagulation cascade interacts with the innate immune system to control infection. However, the formation of clots within the brain vasculature can be detrimental to the host. Recent work has demonstrated that Toxoplasma gondii infects and lyses central nervous system (CNS) endothelial cells that form the blood-brain barrier (BBB).
View Article and Find Full Text PDFTrends Parasitol
January 2025
Laboratory of Interactions in Immuno-Parasitology, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil. Electronic address:
Parasitic infections can profoundly impact brain function through inflammation within the central nervous system (CNS). Once viewed as an immune-privileged site, the CNS is now recognized as vulnerable to immune disruptions from both local and systemic infections. Recent studies reveal that certain parasites, such as Toxoplasma gondii and Plasmodium falciparum, can invade the CNS or influence it indirectly by triggering neuroinflammation.
View Article and Find Full Text PDFPLoS Pathog
December 2024
University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, Lille, France.
Pathogenesis of Toxoplasma gondii in the intermediate host is based on the tachyzoite ability to divide rapidly to produce significant amount of daughter cells in a reduce time frame. The regulation of the cell-cycle specific expression program is therefore key to their proliferation. Transcriptional regulation has a crucial role in establishing this expression program and transcription factors regulates many aspects of tachyzoite cell cycle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!