Bromodomain protein 4 (BRD4), a member of the bromodomain and extra-terminal (BET) protein family, acts as a central element in transcriptional elongation and plays essential roles in cell proliferation. Inhibition of BRD4 binding to acetylated histone tails via its two bromodomains, BD1 and BD2, with small-molecule inhibitors has been shown to be a valid strategy to prevent cancer growth. We have evaluated and established two novel assays that quantify the interaction of transfected BRD4 BD1 with chemical inhibitors inside cultured cells. Both methods are based on the principle of ligand-induced protein stabilization by which the binding of a small-molecule inhibitor stabilizes intracellular BRD4 BD1 and protects it from proteolytic degradation. We demonstrate the universal character of this principle by using two orthogonal, highly sensitive detection technologies for the quantification of BRD4 BD1 levels in cellular lysates: enzyme fragment complementation and time-resolved fluorescence resonance energy transfer (TR-FRET). Upon optimization of both assays to a miniaturized high-throughput format, the methods were validated by testing a set of small-molecule BET inhibitors and comparing the results with those from a cell-free binding assay and a biophysical thermal shift assay. In addition, point mutations were introduced into BRD4 BD1, and the corresponding mutants were characterized in the TR-FRET stabilization assay.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1087057114552398DOI Listing

Publication Analysis

Top Keywords

brd4 bd1
16
protein stabilization
8
small-molecule inhibitors
8
brd4
7
bd1
5
cell-based protein
4
stabilization assays
4
assays detection
4
detection interactions
4
small-molecule
4

Similar Publications

Bromodomain-containing protein 4 (BRD4) plays an important role in gene transcription in a variety of diseases, including inflammation and cancer. However, the mechanism by which the BRD4 inhibitors bind selectively to its bromodomain 1 (BRD4-BD1) and bromodomain 2 (BRD4-BD2) remains unclear. Studying the interaction mechanism between bromodomain of BRD4 and inhibitors will provide new ideas for drug development and disease treatment.

View Article and Find Full Text PDF

Development of a PET Probe Targeting Bromodomain and Extra-Terminal Proteins for In Vitro and In Vivo Visualization.

Pharmaceuticals (Basel)

December 2024

Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.

Bromodomain and extra-terminal (BET) proteins are critical regulators of gene transcription, as they recognize acetylated lysine residues. The BD1 bromodomain of BRD4, a member of the BET family, has emerged as a promising therapeutic target for various diseases. This study aimed to develop and evaluate a novel C-11 labeled PET radiotracer, [C]YL10, for imaging the BD1 bromodomain of BRD4 in vivo.

View Article and Find Full Text PDF

Marine natural product-inspired discovery of novel BRD4 inhibitors with anti-inflammatory activity.

Eur J Med Chem

December 2024

Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:

Bromodomain-containing protein 4 (BRD4) has been identified as a promising target in drug discovery, and the development of novel specific BRD4 bromodomain inhibitors will benefit anti-inflammatory drug discovery as well as bromodomain function role disclose. Herein, inspired by marine quinazolinone alkaloid penipanoid C, we designed and synthesized a series of quinazolin-4(3H)-ones with diverse linkers between two aromatic ring systems. Among them, compound 25 possessed good in vitro BRD4 inhibitory activities (IC = 3.

View Article and Find Full Text PDF

To enhance the accuracy of virtual screening for bromodomain-containing protein 4 (BRD4) inhibitors, two docking protocols and seven scoring functions were compared. A total of 73 crystal structures of BRD4 (BD1) complexes were selected for analysis. Firstly, docking was carried out using both the LibDock and CDOCKER methods.

View Article and Find Full Text PDF

Discovery of the First BRD4 Second Bromodomain (BD2)-Selective Inhibitors.

J Med Chem

December 2024

China-New Zealand Joint Laboratory of Biomedicine and Health, State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, No. 190 Kaiyuan Avenue, Guangzhou 510530, China.

Pan-BD2 inhibitors have been shown to retain an antileukemia effect and display less dose-limiting toxicities than pan-BET inhibitors. However, it is necessary to consider the potential off-target toxicity associated with the inhibition of four BET BD2 proteins. To date, no BRD4 BD2 domain selective inhibitor has been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!