Background: Nerve growth factor (NGF) causes early heat and delayed mechanical hyperalgesia. Axonal transport might contribute to lasting responses. Temporal hyperalgesia development was investigated by administering NGF in paraspinal skin. Transient receptor potential ankyrin 1 (TRPA1) is up-regulated by NGF and chemical responsiveness to cinnamon aldehyde (TRPA1 agonist) was quantified.

Methods: Eight healthy volunteers received 1 μg human recombinant NGF (i.d. 50 μL) to L4/L5 processi spinosi skin. Mechanical, thermal and electrical sensitization was assessed at 3-6 h and at days 1, 2, 3, 5, 7, 10, 14 and 21, and pain upon cinnamon aldehyde (20%, 60 μL) recorded at days 3 and 21.

Results: Heat hyperalgesia developed with an initial maximum at 3 h [heat pain threshold -3.9°; peak pain ratings +22 visual analogue scale (VAS)] that decreased by day 1, subsequently increased to a maximum around day 5 (-5 ± 0.2 °C, +41 ± 4 VAS), and thereafter declined to ∼20% at day 21. Mechanical and electrical hyperexcitability developed within 3 days and gradually increased to peak between days 14 and 21. Pain intensity upon cinnamon aldehyde stimulation was doubled at the NGF site at day 3 and was still increased by about 50% at day 21.

Conclusions: NGF causes immediate heat hyperalgesia probably linked to an up-regulation and sensitization of transient receptor potential vanilloid 1 and possibly other proteins involved in heat transduction. The delayed mechanical hyperalgesia is apparently independent of the time required for axonal transport of NGF receptor complexes. Local mRNA translation at axonal terminals and protein accumulation is hypothesized being involved in sustained NGF-evoked hyperalgesia.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ejp.603DOI Listing

Publication Analysis

Top Keywords

cinnamon aldehyde
12
mechanical electrical
8
delayed mechanical
8
mechanical hyperalgesia
8
axonal transport
8
transient receptor
8
receptor potential
8
days pain
8
heat hyperalgesia
8
hyperalgesia
7

Similar Publications

Objective: Primary tumors of the brain and a large percent of malignant brain tumors are gliomas. Gliomas comprise high-grade gliomas like glioblastoma multiforme (GBMs), many of which have mutation in the tumor suppressor p53 gene and low-grade gliomas (LGGs). LGGs can progress to GBMs due to various factors.

View Article and Find Full Text PDF

Characterization of key flavor compounds in cinnamon bark oil extracts using principal component analysis.

Food Res Int

January 2025

State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China. Electronic address:

Cinnamon is a widely used spice, known for its distinctive flavor and aromatic properties. Due to its lignified structure, the release of flavor components typically requires prolonged stewing (1-2 h). To simulate the release of flavor components during stewing, this study employed corn oil for extraction, avoiding the use of organic solvents.

View Article and Find Full Text PDF

Cinnamon is one of the world's oldest and most popular spices, and is derived from the inner bark of several tree species from the genus Cinnamomum. During the last two decades, cinnamon has demonstrated beneficial metabolic effects not only in animal experiments but also in clinical trials. Even recent meta-analyses have shown the protective effects of cinnamon on different components of metabolic syndrome and their complications.

View Article and Find Full Text PDF

Inflammatory disorders encompass a range of conditions, including osteoarthritis (OA), characterized by the body's heightened immune response to diverse stimuli. OA is a prevalent degenerative joint disease characterized by the progressive deterioration of joint cartilage and subchondral bone, leading to pain, limited mobility, and physical disability. Synovitis, the inflammation of the synovial membrane, is increasingly recognized as a critical factor in OA pathogenesis and progression.

View Article and Find Full Text PDF

-cinnamaldehyde (TCA), a major bioactive compound derived from cinnamon ( spp.), has garnered significant attention for its diverse therapeutic properties. Its broad-spectrum antimicrobial activity, targeting both Gram-positive and Gram-negative bacteria as well as various fungi, positions TCA as a potent natural antimicrobial agent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!