AI Article Synopsis

Article Abstract

In this paper, a novel approach for controlling the direction of defect evolution in graphene through intercalation of organic small molecules into graphite oxide (GO) combined with a one-pot microwave-assisted reaction is reported. By using ethanol as intercalator, the bulk production of high quality graphene with its defects being satisfactorily healed is achieved. The repair of defects using extraneous carbon atoms and the hybrid state of these carbon atoms are definitely demonstrated using isotopic tracing studies with (13)C-labeled ethanol combined with (13)C solid-state NMR. The defect healed graphene shows excellent crystallinity, extremely low oxygen content (C : O ratio of 23.8) and has the highest sheet conductivity (61 500 S m(-1)) compared to all other reported graphene products derived from GO. By using methanol or benzene as intercalators, hierarchically porous graphene with a self-supported 3-dimensional framework (∼917 m(2) g(-1)) containing both macropores and mesopores (2-5 nm) is obtained. This graphene possesses a distinctive amorphous carbon structure around the edge of the nanopores, which could be conducive to enhancing the lithium storage performance (up to 580 mA h g(-1) after 300 cycles) when tested as an anode of lithium ion batteries, and might have promising applications in the field of electrode materials, catalysis, and separation, and so on. The mechanism involved for the controlled defect evolution is also proposed. The simple, ultrafast and unified strategy developed in this research provides a practical and effective approach to harness structural defects in graphene-based materials, which could also be expanded for designing and preparing other ordered carbon materials with specific structures.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4nr04453cDOI Listing

Publication Analysis

Top Keywords

defect evolution
12
controlling direction
8
direction defect
8
graphene
8
evolution graphene
8
high quality
8
defect healed
8
hierarchically porous
8
porous graphene
8
carbon atoms
8

Similar Publications

Interventions for adult congenital heart disease.

Nat Rev Cardiol

January 2025

Quebec Heart & Lung Institute, Laval University, Quebec City, Quebec, Canada.

Advances in imaging diagnostics, surgical techniques and transcatheter interventions for paediatric patients with severe congenital heart disease (CHD) have substantially reduced mortality, thereby extending the lifespan of these individuals and increasing the number of adults with complex CHD. Transcatheter interventions have emerged as an alternative to traditional open-heart surgery to mitigate congenital defects. The evolution of techniques, the introduction of new devices and the growing experience of operators have enabled the treatment of patients with progressively more complex conditions.

View Article and Find Full Text PDF

Defect engineering can create various vacancy configurations in catalysts by finely tuning the local electronic and geometric structures of the active sites. However, achieving precise control and identification of these defects remains a significant challenge, and the origin of vacancy configurations in catalysts, especially clustered or associated ones, remains largely unknown. Herein, we successfully achieve the controllable fabrication and quantitative identification of triple O-Ti-O vacancy associate (VVV) in nanosized Ni-doped TiO.

View Article and Find Full Text PDF

Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) are premalignant stages in the development of multiple myeloma (MM). Advances in detection, risk stratification, and therapeutic intervention have transformed our understanding of disease progression. Sensitive techniques like mass spectrometry have identified smaller monoclonal gammopathies, such as monoclonal gammopathy of indeterminate potential (MGIP), which may precede MGUS.

View Article and Find Full Text PDF

Engineering Planar Crystallinity in Nitrogen-Vacancy-Incorporated Carbon Nitride for Efficient Photoredox Catalysis.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China.

The concurrent evolution of value-added benzimidazole compounds and hydrogen within the domain of chemical synthesis is of paramount importance. The utilization of photocatalysis enhances both the efficiency and environmental benignity of the synthetic process. However, it is profoundly challenging within a photocatalytic system to simultaneously augment the number of active sites and the internal transport rate of photogenerated charge carriers.

View Article and Find Full Text PDF

Rh single atoms anchored in hollow microflower MoS/sulfur-vacancy rich CdZnS with dual proton reduction sites for enhanced photocatalytic hydrogen generation.

J Colloid Interface Sci

January 2025

State Key Laboratory Base for Eco-chemical Engineering, Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address:

Modifying CdZnS with precious metal at the atomic scale is a promising approach for maximizing its photocatalytic performance. Herein, Rh single atoms (Rh) were successfully anchored on hollow microflower MoS/sulfur-vacancy-rich CdZnS (CZS-SVs) to boost H generation. The optimal catalyst Rh@MoS/CZS-SVs reaches a H productivity of 39,827 μmol h g, representing 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!