Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While recent years have seen considerable progress in image denoising, the leading techniques have been developed for digital photographs or other images that can have very different characteristics than those encountered in X-ray applications. In particular here we examine X-ray backscatter (XBS) images collected by airport security systems, where images are piecewise smooth and edge information is typically more correlated with objects while texture is dominated by statistical noise in the detected signal. In this paper, we show how multiple estimates for a denoised XBS image can be combined using a variational approach, giving a solution that enhances edge contrast by trading off gradient penalties against data fidelity terms. We demonstrate the approach by combining several estimates made using the non-local means (NLM) algorithm, a widely used patch-based denoising method. The resulting improvements hold the potential for improving automated analysis of low-SNR X-ray imagery and can be applied in other applications where edge information is of interest.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/XST-140446 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!