We present a first-principles study of the properties of ordinary hexagonal ice (phase I(h)) and of its proton-ordered version (phase XI) under the action of static electric fields. We compute the mechanical response to the field in addition to the ionic current-voltage diagrams; we also analyze several other microscopic aspects of the proton transfer mechanism, with particular emphasis on the role played by the oxygen sublattice in driving molecular dissociation. We further study the topological aspects of the mechanical and electrical responses by orienting the external field along two different crystalline directions in both ice samples. At variance with ice Ih, ice XI displays an anisotropic behavior in the range of explored field intensities. In fact, when the direction of the field coincides with the ferroelectric axis, sustained molecular dissociation and proton transfer events are both observed just beyond a given field intensity; instead, the two processes exhibit different activation thresholds when the field is oriented along another symmetry axis. The underlying mechanism of molecular dissociation appears to be the same in solid and liquid water independently of the direction of the field.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp507376vDOI Listing

Publication Analysis

Top Keywords

molecular dissociation
12
mechanical electrical
8
proton transfer
8
direction field
8
field
7
electric field
4
field orientation
4
orientation mechanical
4
electrical properties
4
properties water
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!