Dry powder inhalers (DPIs) are gaining popularity for the delivery of drugs. A cost effective and efficient delivery device is necessary. Developing new DPIs by modifying an existing device may be the simplest way to improve the performance of the devices. The aim of this research was to produce a new DPIs using computational fluid dynamics (CFD). The new DPIs took advantages of the Cyclohaler® and the Rotahaler®. We chose a combination of the capsule chamber of the Cyclohaler® and the mouthpiece and grid of the Rotahaler®. Computer-aided design models of the devices were created and evaluated using CFD. Prototype models were created and tested with the DPI dispersion experiments. The proposed model 3 device had a high turbulence with a good degree of deagglomeration in the CFD and the experiment data. The %fine particle fraction (FPF) was around 50% at 60 L/min. The mass median aerodynamic diameter was around 2.8-4 μm. The FPF were strongly correlated to the CFD-predicted turbulence and the mechanical impaction parameters. The drug retention in the capsule was only 5-7%. In summary, a simple modification of the Cyclohaler® and Rotahaler® could produce a better performing inhaler using the CFD-assisted design.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10837450.2014.965325 | DOI Listing |
PLoS One
January 2025
Department of Anatomy, Nihon University School of Dentistry, Tokyo, Japan.
This study presents a novel method for creating customized brain slice matrices using Computer-Aided Design (CAD) and 3D printing technology. Brain Slice Matrices are essential jigs for the reproducible preparation of brain tissue sections in neuroscience research. Our approach leverages the advantages of 3D printing, including design flexibility, cost-effectiveness, and rapid prototyping, to produce custom-made brain matrices based on specific morphometric measurements.
View Article and Find Full Text PDFLab Chip
January 2025
Department of Urology, Changhai Hospital, Naval Medical University, Shanghai, China.
Organ-on-a-chip culture systems using human organ tissues provide invaluable preclinical insights into systemic functions . This study aimed to develop a novel human testicular tissue chip within a microfluidic device employing computer-aided design software and photolithography technology. Polydimethylsiloxane was used as the primary material to ensure marked gas permeability and no biotoxicity, enabling effective mimicry of the testicular microenvironment.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, Sidi Othman, Box 7955, Casablanca, Morocco.
Alzheimer's disease (AD) is a chronic and progressive neurodegenerative brain disorder, primarily affecting the elderly. Its socio-economic impact and mortality rate are alarming, necessitating innovative approaches to drug discovery. Unlike single-target diseases, Alzheimer's multifactorial nature makes single-target approaches less effective.
View Article and Find Full Text PDFComb Chem High Throughput Screen
January 2025
Department of Chemistry, Integral University, Lucknow, India.
Computer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo- arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry.
View Article and Find Full Text PDFBMC Oral Health
January 2025
Department of Fixed Prosthodontics, Faculty of Dentistry, Cairo University, Cairo, Egypt.
Background: Anatomically formed healing abutments were suggested in literature to address many of the issues associated with immediate posterior implant insertion such as large extraction sockets that are extremely hard to seal without reflecting the mucoperiosteal flap, extraction sockets anatomy that are not suitable for regular healing abutment placement, and potentially high occlusal stresses when planning a temporary implant supported prothesis to improve the conditioning of supra implant tissue architecture and the emergence profile of the implant supported restorations.
Purpose: To clinically evaluate the peri-implant soft tissue profile of single posterior implant retained restorations and to assess patient related outcomes of the implant restorations that were conditioned immediately by CAD-CAM socket sealing abutments (SSA) versus those conditioned by Titanium (Ti) standard healing abutments (SHA).
Methods: Twenty participants received twenty-two single maxillary immediate implants after flapless minimally invasive tooth extraction and 3D guided implant placement in the posterior area (premolar and molar) and allocated randomly into two groups (n = 11), the intervention group: patients received PEEK SSA and the control group: the patients received Ti SHA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!