The aim of this study was to develop and characterize the paclitaxel (PTX)-lapatinib (LPT) loaded micelles for simultaneous delivery against metastatic breast cancer. Efflux pump-mediated drug resistance influences the efficacy of chemotherapeutic regimens. However, in the newly developed delivery system, LPT was selected to act as chemosensetizer. LPT increases the intracellular level of PTX by inhibition of efflux pumps. Pluronic F127 was selected for the preparation of the micelles, and its critical micelle concentration was determined to be 0.012 mg/ml. D-optimal design was used to analyze the impact of different experimental parameters on PTX and LPT encapsulation ratio. PTX encapsulation ratio was optimized at 68.3%, while LPT encapsulation ratio found to be 70.1%. Transmission electron microscope analyses demonstrate that micelles possess a good core-shell structure without any sharp edge. Laser scattering method results indicated that size of the optimized micelles is 64.81 nm with acceptable polydispersity index (0.309). In vitro release studies showed a sustain release pattern. PTX-LPT-loaded micelles suppressed the proliferation of resistant T-47D cell line (IC = 0.6 ± 0.1 µg/ml) compared to binary mixture of PTX and LPT (IC = 6.7 ± 1.2 µg/ml). Therefore, it is concluded that the developed formulation might increase the therapeutic efficacy in drug resistant metastatic breast cancer.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10837450.2014.965323DOI Listing

Publication Analysis

Top Keywords

metastatic breast
12
breast cancer
12
encapsulation ratio
12
pluronic f127
8
ptx lpt
8
lpt encapsulation
8
micelles
6
lpt
6
f127 polymeric
4
polymeric micelles
4

Similar Publications

Background: Benign and malignant breast tumors differ in their microvasculature morphology and distribution. Histologic biomarkers of malignant breast tumors are also correlated with the microvasculature. There is a lack of imaging technology for evaluating the microvasculature.

View Article and Find Full Text PDF

Breast cancer is a highly heterogeneous disease whose prognosis and treatment as defined by the expression of three receptors-oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)-is insufficient to capture the full spectrum of clinical outcomes and therapeutic vulnerabilities. Previously, we demonstrated that transcriptional and genomic profiles define eleven integrative subtypes with distinct clinical outcomes, including four ER subtypes with increased risk of relapse decades after diagnosis. Here, to determine whether these subtypes reflect distinct evolutionary histories, interactions with the immune system and pathway dependencies, we established a meta-cohort of 1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease with whole-genome and transcriptome sequencing.

View Article and Find Full Text PDF

Bioactive Secondary Metabolites from Bauhinia variegata Linn. Roots: Isolation, Characterization, and Cytotoxic Evaluation.

Curr Pharm Des

January 2025

Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States.

Introduction: This study aims to isolate and characterize potential cytotoxic compounds from the roots of Bauhinia variegata Linn. (Caesalpiniaceae) and evaluate their activity against human cancer cell lines. Five compounds, namely β-sitosterol (1), piperine (2), piperolein B (3), retrofractamide A (4), and dehydropipernonaline (5), were isolated from B.

View Article and Find Full Text PDF

Introduction: The prognostic value of PAM50 intrinsic subtypes (IS), cell cycle, and immune-related gene expression in HR+ /HER2- advanced breast cancer (BC) treated with CDK4/6 inhibitors (CDK4/6i) and endocrine therapy (ET) in a first-line metastatic setting is unclear. This study evaluates these biomarkers in metastatic biopsies from patients diagnosed with HR+ /HER2- advanced BC.

Methods: CDK-PREDICT study is a multicentric, ambispective observational cohort study conducted in six Spanish hospitals.

View Article and Find Full Text PDF

Monitoring of the Local Extracellular Environment Using Chiral Gold Nanoparticles.

J Am Chem Soc

January 2025

CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián 20014, Spain.

In three-dimensional (3D)-printed tissue models, sensitive, noninvasive techniques are required to detect changes in hydrogel structure caused by cellular remodeling. We demonstrate herein that circular dichroism (CD) spectroscopy provides a reliable method for detecting hydrogel structural variations. We probe directly the plasmonic optical activity of chiral gold nanorods (c-AuNRs) embedded within the hydrogel matrix, in response to variations in the local environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!