The molecular mechanisms influencing healthspan are unclear but mitochondrial function, resistance to oxidative stress and proteostasis are recurring themes. Tumor necrosis factor Receptor Associated Protein 1 (TRAP1), the mitochondrial analog of Hsp75, regulates levels of reactive oxygen species in vitro and is found expressed at higher levels in tumor cells where it is thought to play a pro-survival role. While TRAP1-directed compartmentalized protein folding is a promising target for cancer therapy, its role at the organismal level is unclear. Here we report that overexpression of TRAP1 in Drosophila extends healthspan by enhancing stress resistance, locomotor activity and fertility while depletion of TRAP1 has the opposite effect, with little effect on lifespan under both conditions. In addition, modulating TRAP1 expression promotes the nuclear translocation of homeobox protein Dve and increases expression of genes associated with the mitochondrial unfolded protein response (UPR(mt)), indicating an activation of this proteostasis pathway. Notably, independent genetic knockdown of components of the UPR(mt) pathway dampen the enhanced stress resistance observed in TRAP1 overexpression flies. Together these studies suggest that TRAP1 regulates healthspan, potentially through activation of the UPR(mt).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4310785 | PMC |
http://dx.doi.org/10.1016/j.mad.2014.09.002 | DOI Listing |
J Cachexia Sarcopenia Muscle
February 2025
Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, Republic of Korea.
Background: Sarcopenia, characterized by a gradual decline in skeletal muscle mass and function with age, significantly impacts both quality of life and mortality. Autophagy plays a crucial role in maintaining muscle health. There is growing interest in leveraging autophagy to mitigate muscle ageing effects.
View Article and Find Full Text PDFJ Ginseng Res
January 2025
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
Background: Ginseng Berry Concentrate (GBC) enhances exercise capacity in mice, but the effects of its key component, ginsenoside Re (G-Re), on aging and mitochondrial function are not well understood. This study investigates the impact of G-Re on mitophagy and its potential to promote healthy aging.
Methods: Experiments in C2C12 myocytes and HeLa-mitoKeima-PARKIN cells assessed GBC and G-Re's effects on mitophagy, supported by Gene Set Enrichment Analysis.
Life Med
June 2024
Laboratory of Stem cell and anti-Aging Research, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
The decline in intestinal stem cell (ISC) function is a hallmark of aging, contributing to compromised intestinal regeneration and increased incidence of age-associated diseases. Novel therapeutic agents that can rejuvenate aged ISCs are of paramount importance for extending healthspan. Here, we report on the discovery of Chrysosplenosides I and A (CAs 1 & 2), flavonol glycosides from the Xizang medicinal plant Maxim.
View Article and Find Full Text PDFAging (Albany NY)
January 2025
Geneva College of Longevity Science, Geneva 1204, Switzerland.
The untimely passing of Dr. Mikhail "Misha" Blagosklonny has left a lasting void in geroscience and oncology. This review examines his profound contributions, focusing on his pioneering the Hyperfunction Theory and his advocacy for rapamycin, an mTOR inhibitor, as a therapeutic agent for lifespan extension.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!