Tricyanofuran (TCF) derivatives attached to both anthracene and pyrene moieties were synthesised and characterised by optical, electrochemical and computational techniques. Both compounds exhibited similar absorption profile as well as electrochemical behaviour, however the pyrene derivative showed 20-fold higher non-linear optical activity measured by the EFISH technique. This huge difference has been assigned to (i) a lower molar absorption and (ii) a higher torsion angle for the anthracene derivative, confirmed by both experimental X-ray diffraction and DFT calculations. Furthermore, we note that the μβ1.907 value of -1700 × 10(-48) esu recorded for the pyrene derivative in CHCl3/pyridine is remarkable for a NLO chromophore lacking a classical push-pull structure.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4cp03509gDOI Listing

Publication Analysis

Top Keywords

non-linear optical
8
optical activity
8
anthracene pyrene
8
pyrene derivative
8
torsional twist
4
twist 2nd
4
2nd order
4
order non-linear
4
activity anthracene
4
pyrene
4

Similar Publications

: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.

View Article and Find Full Text PDF

Green approach to synthesis polymer composites based on chitosan with desired linear and non-linear optical characteristics.

Sci Rep

January 2025

Turning Trash to Treasure Laboratory (TTTL), Research and Development Center, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaymaniyah, 46001, Iraq.

The current study used sustainable and green approaches to convey polymer composites with desired optical properties. The extracted green tea dye (GTD) enriched with ligands was used to synthesize zinc metal complexes. Green chitosan biopolymer incorporated with green synthesized metal complex using casting technique was used to deliver polymer composites with improved optical properties.

View Article and Find Full Text PDF

Background: High-field magnetic resonance imaging (MRI) is a powerful diagnostic tool but can induce unintended physiological effects, such as nystagmus and dizziness, potentially compromising the comfort and safety of individuals undergoing imaging. These effects likely result from the Lorentz force, which arises from the interaction between the MRI's static magnetic field and electrical currents in the inner ear. Yet, the Lorentz force hypothesis fails to explain observed eye movement patterns in healthy adults fully.

View Article and Find Full Text PDF

Aim: To assess the relationship between dietary inflammatory index (DII) and prevalence of glaucoma among individuals aged 40y and above in the United States.

Methods: Participants were drawn from 2 cycles of the National Health and Nutrition Examination Survey (NHANES, 2005-2008) for a cross-sectional study. DII was calculated from 24-hour dietary recall questionnaire conducted by experienced researchers and data analyzed in R according to the NHANES user guide, "Stratified Multi-stage Probability Sampling".

View Article and Find Full Text PDF

Many applications of nanocrystals rely on their use in light detection and emission. In recent years, nanocrystals with more relaxed carrier confinement, including so-called 'bulk' and 2D implementations, have made their stake. In such systems, the charge carriers generated after (photo-)excitation are spread over a semi-continuous density of states, behaviour controlled by the carrier temperature .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!