Osteoporosis is a serious and multifactorial disease. The number of people affected with osteoporosis is increasing due to the lengthening of life expectancy. Currently, unlike the genetic, nutritional and hormonal factors that have been the focus of most studies of osteoporosis, mechanical stimuli that potentially can produce an increase in bone strength have not been well studied. Studies suggest that the relationship between the health of the bone and mechanical stimuli occurs through bone adaptive remodeling, which is activated by means of the shear stress transmitted by the interstitial fluid flow. The present work consists of a finite element analysis of a femur to simulate the basic movements of the hip (flexion, extension, abduction, and adduction) to compare the shear stresses in a common zone of fracture and in the critical mechanical strength zones of the femoral head. A comparison of the distribution and magnitude of the shear stresses was performed to estimate the movement that could induce a more rapid adaptive bone remodeling. This study is the first step in the development of a physical therapy for a preventive rehabilitation that helps to prevent patients with low bone mineral density to avoid suffering osteoporosis hip fractures. The finite element model was constructed using a free-access three-dimensional standardized femur obtained from the Instituti Ortopedici Rizzoli, Bologna, Italy. The mechanical properties and the muscular forces were obtained from a specialized bibliography. We conclude that the movements that exhibit a higher mean value and a good shear stress distribution in the femoral neck are hip extension and abduction.
Download full-text PDF |
Source |
---|
Aging Dis
December 2024
Department of Biomechanics, Poznan University of Physical Education, Poznań, Poland.
This review summarizes the mechanism and role of physical activity in maintaining the proper functioning of the musculoskeletal system. Bone adaptation to the mechanical environment occurs in skeletal regions subjected to the greatest stresses resulting from the nature of exercise, however, there is a varied response of bone tissue to mechanical loads depending on its material and structural properties (trabecular and cortical). The regulation of bone tissue metabolism during physical exercise is influenced by factors associated with mechanical stress (gravitational forces, impact loading, and muscular contractions) as well as by systemic mechanisms (hormones, myokines, cytokines).
View Article and Find Full Text PDFCurr Protoc
January 2025
Center for Stem Cell Research and Development (PEDI-STEM), Hacettepe University, Ankara, Turkey.
Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed.
View Article and Find Full Text PDFBackground: Yes-associated protein (YAP) is a crucial mechanosensor involved in mechanotransduction, but its role in regulating mechanical force-induced bone remodeling during orthodontic tooth movement (OTM) is unclear. This study aims to elucidate the relationship between mechanotransduction and mechanical force-induced alveolar bone remodeling during OTM.
Results: Our study confirms an asynchronous (temporal and spatial sequence) remodeling pattern of the alveolar bone under mechanical force during OTM.
ACS Appl Mater Interfaces
January 2025
Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.
Mechanical metamaterials exhibit several unusual mechanical properties, such as a negative Poisson's ratio, which impart additional capabilities to materials. Recently, hydrogels have emerged as exceptional candidates for fabricating mechanical metamaterials that offer enhanced functionality and expanded applications due to their unique responsive characteristics. However, the adaptability of these metamaterials remains constrained and underutilized, as they lack integration of the hydrogels' soft and responsive characteristics with the metamaterial design.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!