Background: The endocannabinoid system has previously been implicated in the regulation of neurons and inflammatory cells. Additionally, it has been reported that endocannabinoid receptors are present on circulating platelets, but there has been conflicting evidence on their contribution to platelet function.

Objectives: Our aim was to examine the role of endocannabinoids in platelet function in vitro and in vivo.

Methods And Results: We studied the effects of the well-characterized endogenous endocannabinoid anandamide on platelet aggregation in suspension, α-granule release, calcium mobilization, Syk phosphorylation, as well as platelet spreading and aggregate formation under flow. Anandamide inhibits platelet aggregation and α-granule release by collagen, collagen-derived peptide CRP-XL, ADP, arachidonic acid and thromboxane A2 analogue U46619. However, activation via thrombin receptor PAR-1 stays largely unaffected. Calcium mobilization is significantly impaired when platelets are stimulated with collagen or CRP-XL, but remains normal in the presence of the other agonists. In line with this finding, we found that anandamide prevents collagen-induced Syk phosphorylation. Furthermore, anandamide-treated platelets exhibit reduced spreading on immobilized fibrinogen, have a decreased capacity for binding fibrinogen in solution and show perturbed platelet aggregate formation under flow over collagen. Finally, we investigated the influence of Cannabis sativa consumption by human volunteers on platelet activation. Similar to our in vitro findings with anandamide, ex vivo collagen-induced platelet aggregation and aggregate formation on immobilized collagen under flow were impaired in whole blood of donors that had consumed Cannabis sativa.

Conclusions: Endocannabinoid receptor agonists reduce platelet activation and aggregate formation both in vitro and ex vivo after Cannabis sativa consumption. Further elucidation of this novel regulatory mechanism for platelet function may prove beneficial in the search for new antithrombotic therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180465PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108282PLOS

Publication Analysis

Top Keywords

aggregate formation
20
platelet activation
12
formation flow
12
platelet aggregation
12
platelet
11
platelet function
8
α-granule release
8
calcium mobilization
8
syk phosphorylation
8
cannabis sativa
8

Similar Publications

Evaluating amyloid-beta aggregation and toxicity in transgenic Caenorhabditis elegans models of Alzheimer's disease.

Methods Cell Biol

January 2025

Federal University of Santa Maria, Center for Natural and Exact Sciences, Department of Biochemistry and Molecular Biology, Graduate Program in Biological Sciences: Toxicological Biochemistry, Camobi, Santa Maria, RS, Brazil.

Alzheimer's disease (AD) is the leading cause of dementia in the elderly, clinically characterized by memory loss, cognitive decline, and behavioral disturbances. Its pathogenesis is not fully comprehended but involves intracellular depositions of amyloid beta peptide (Aβ) and neurofibrillary tangles of hyperphosphorylated tau. Currently, pharmacological interventions solely slow the progression of symptoms.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by a repeat of the cytosine-adenine-guanine trinucleotide (CAG) in the huntingtin gene (HTT). This results in the translation of a mutant huntingtin (mHTT) protein with an abnormally long polyglutamine (polyQ) repeat. The pathology of HD leads to neuronal cell loss, motor abnormalities, and dementia.

View Article and Find Full Text PDF

The ternary complex effectively prevents droplet aggregation, Ostwald ripening, and phase separation through its gel network, thereby demonstrating its capability in bioactive compound delivery. In this work, the influence of varying chickpea protein isolate (CPI) levels on the microstructure, gel characteristics, stability and functional properties of grape seed proanthocyanidin (GSP) and konjac gum (KGM) stabilized ternary complexes was investigated. Visual appearance indicated the formation of a non-stratified ternary complex as the CPI enhanced to 3-4 %.

View Article and Find Full Text PDF

Molecular mechanism of protein-lipid interactions in steamed egg gelation and deterioration: A quantitative proteomic study.

Int J Biol Macromol

January 2025

Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China. Electronic address:

Steamed egg (SE), a traditional egg dish, exhibits steaming time-dependent textural properties. This study investigated the molecular mechanisms underlying SE gel formation and deterioration through quantitative proteomics combined with physicochemical characterization. Results showed optimal gel formation at 11 min steaming, while prolonged steaming (23 min) led to gel cracking and sensory deterioration.

View Article and Find Full Text PDF

Protein aggregation, a major concern in biopharmaceutical quality control, can be accelerated by various stresses during clinical handling. This study investigated potential aggregation risk factors during dilution process with syringe handling for intravenous administration. Using γ-globulin and IgG solutions as surrogate models of antibody therapeutics, we examined the effects of high sliding speeds and piston operations of the syringe on protein aggregation during saline dilution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!