The sapB gene, encoding Bacillus pumilus CBS protease, and seven mutated genes (sapB-L31I, sapB-T33S, sapB-N99Y, sapB-L31I/T33S, sapB-L31I/N99Y, sapB-T33S/N99Y, and sapB-L31I/T33S/N99Y) were overexpressed in protease-deficient Bacillus subtilis DB430 and purified to homogeneity. SAPB-N99Y and rSAPB displayed the highest levels of keratinolytic activity, hydrolysis efficiency, and enzymatic depilation. Interestingly, and at the semi-industrial scale, rSAPB efficiently removed the hair of goat hides within a short time interval of 8 h, thus offering a promising opportunity for the attainment of a lime and sulphide-free depilation process. The efficacy of the process was supported by submitting depilated pelts and dyed crusts to scanning electron microscopic analysis, and the results showed well opened fibre bundles and no apparent damage to the collagen layer. The findings also revealed better physico-chemical properties and less effluent loads, which further confirmed the potential candidacy of the rSAPB enzyme for application in the leather industry to attain an ecofriendly process of animal hide depilation. More interestingly, the findings on the substrate specificity and kinetic properties of the enzyme using the synthetic peptide para-nitroanilide revealed strong preferences for an aliphatic amino-acid (valine) at position P1 for keratinases and an aromatic amino-acid (phenylalanine) at positions P1/P4 for subtilisins. Molecular modeling suggested the potential involvement of a Leu31 residue in a network of hydrophobic interactions, which could have shaped the S4 substrate binding site. The latter could be enlarged by mutating L31I, fitting more easily in position P4 than a phenylalanine residue. The molecular modeling of SAPB-T33S showed a potential S2 subside widening by a T33S mutation, thus suggesting its importance in substrate specificity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181652 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108367 | PLOS |
World J Microbiol Biotechnol
December 2024
Departamento de Biología Molecular, Facultad de Ciencias Exactas Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Ruta Nacional 36 Km 601, 5800, Río Cuarto, Córdoba, CP, Argentina.
Arsenic (As) contamination in agricultural groundwater and soil is a significant economic and health problem worldwide. It inhibits soybean (Glycine max (L.) Merr.
View Article and Find Full Text PDFFront Microbiol
December 2024
Indian Council of Agricultural Research-National Research Centre for Grapes, Pune, Maharashtra, India.
Introduction: Grapevine ( L.), one of the economically important fruit crops cultivated worldwide, harbours diverse endophytic bacteria (EBs) responsible for managing various fungal diseases. Anthracnose () (Penz.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan 430062, PR China; School of Life Science, Hubei University, Wuhan 430062, PR China. Electronic address:
Biobleaching is an eco-friendly strategy that can reduce costs and pollution in the pulp and paper industry. Herein, an effective biobleaching approach was proposed using a novel multi-enzyme complex. The multi-enzyme complex was constructed based on mini-cellulosome scaffolding protein integrated with laccase (BpLac) and xylanase (BpXyn) from Bacillus pumilus.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China.
Enzymatic fuel cells (EFCs) are emerging as promising technologies in renewable energy and biomedical applications, utilizing enzyme catalysts to convert the chemical energy of renewable biomass into electrical energy, known for their high energy conversion efficiency and excellent biocompatibility. Currently, EFCs face challenges of poor stability and catalytic efficiency at the cathodes, necessitating solutions to enhance the oriented immobilization of multicopper oxidases for improved heterogeneous electron transfer efficiency. This study successfully identified a surface-binding peptide (SBP, 13 amino acids) derived from a methionine-rich fragment (MetRich, 53 amino acids) in CueO through semirational design.
View Article and Find Full Text PDFHeliyon
December 2024
ICAR-Indian Institute of Maize Research, Ludhiana, 141004, Punjab, India.
This study investigates the potential of chromium (VI) resistant bacterial isolates to alleviate heavy metal stress in fodder maize plants and enhance phytoremediation. Twenty-one bacterial strains were isolated from contaminated water, with five strains; (BHR1) (BHR2), (BHR4), (BHR5) and (BHR6) selected based on their significant plant-growth promoting (PGP) traits and heavy metal tolerance. Under chromium (Cr VI) stress, the BHR1 strain significantly improved seed germination, seedling length and vigor index of fodder maize variety (J 1007) especially at 150 mg/L Cr (VI), where these parameters increased by 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!